Skip to main content

General Assessment of the Currently Available Biodiesel Production Technologies

  • Chapter
  • First Online:
Green Fuels Technology

Abstract

With the predicted depletion of crude oil reservoirs in the next decades as well the need for developing renewable energy and sustainable production processes, low-carbon technologies will have a crucial role in securing energy supplies for future generations and offsetting the environmental impact of fossil fuels production and use. In this scenario, biodiesel offers well known advantages over petrodiesel because it is an environmental friendly fuel whose fuel properties are attractive and its overall emission profile of greenhouse gases and sulfur is low. This work provides a broad overview about biodiesel production technologies after more than two decades of intensive R&D, highlighting the main aspects related to feedstock availability, conversion techniques, and process economics. In the vanguard of biodiesel production technologies are the advent of novel reactor concepts, the use of process intensification, and the development of novel catalytic systems. These technologies, combined with alternatives feedstocks such as algae, non-edible vegetable oils, industrial soapstocks, and waste oils and greases, are likely to pave the road for the establishment of more environmental friendly and economically affordable processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R, Muys B (2008) Jatropha bio-diesel production and use. Biomass Bioenerg 32(12):1063–1084. doi:10.1016/j.biombioe.2008.03.003

    Article  Google Scholar 

  • Adewale P, Dumont MJ, Ngadi M (2015) Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renew Sust Energ Rev 45:574–588. doi:10.1016/j.rser.2015.02.039

    Article  Google Scholar 

  • Akoh CC, Chang SW, Lee GC, Shaw JF (2007) Enzymatic approach to biodiesel production. J Agric Food Chem 55(22):8995–9005. doi:10.1021/jf071724y

    Article  Google Scholar 

  • Al-Zuhair S, Hussein A, Al-Marzouqi AH, Hashim I (2012) Continuous production of biodiesel from fat extracted from lamb meat in supercritical CO2 media. Biochem Eng J 60:106–110. doi:10.1016/j.bej.2011.10.010

    Article  Google Scholar 

  • Alba-Rubio AC, Santamaria-Gonzalez J, Merida-Robles JM, Moreno-Tost R, Martin-Alonso D, Jimenez-Lopez A, Maireles-Torres P (2010) Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts. Catal Today 149(3–4):281–287. doi:10.1016/j.cattod.2009.06.024

    Article  Google Scholar 

  • Ali MH, Mashud M, Rubel MR, Ahmad RH (2013) Biodiesel from neem oil as an alternative fuel for diesel engine. Procedia Eng 56:625–630. doi:10.1016/j.proeng.2013.03.169

    Article  Google Scholar 

  • Alptekin E, Canakci M, Sanli H (2012) Evaluation of leather industry wastes as a feedstock for biodiesel production. Fuel 95:214–220. doi:10.1016/j.fuel.2011.08.055

    Article  Google Scholar 

  • Aransiola EF, Betiku E, Ikhuomoregbe DIO, Ojumu TV (2012) Production of biodiesel from crude neem oil feedstock and its emissions from internal combustion engines. Afr J Biotechnol 11:6178–6186

    Article  Google Scholar 

  • Aransiola EF, Betiku E, Layokun S, Solomon B (2010) Production of biodiesel by transesterification of refined soybean oil. IJBCS 4(2):391–399

    Google Scholar 

  • Aransiola EF, Ojumu TV, Oyekola OO, Madzimbamuto TF, Ikhu-Omoregbe DIO (2014) A review of current technology for biodiesel production: State of the art. Biomass Bioenerg 61:276–297. doi:10.1016/j.biombioe.2013.11.014

    Article  Google Scholar 

  • Armenta RE, Vinatoru M, Burja AM, Kralovec JA, Barrow CJ (2007) Transesterification of fish oil to produce fatty acid ethyl esters using ultrasonic energy. J Am Oil Chem Soc 84(11):1045–1052. doi:10.1007/s11746-007-1129-2

    Article  Google Scholar 

  • Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, Fayaz H (2013) Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sust Energ Rev 18:211–245. doi:10.1016/j.rser.2012.10.013

    Article  Google Scholar 

  • Avhad MR, Marchetti JM (2015) A review on recent advancement in catalytic materials for biodiesel production. Renew Sust Energ Rev 50:696–718. doi:10.1016/j.rser.2015.05.038

    Article  Google Scholar 

  • Babajide O, Musyoka N, Petrik L, Ameer F (2012) Novel zeolite Na-X synthesized from fly ash as a heterogeneous catalyst in biodiesel production. Catal Today 190(1):54–60. doi:10.1016/j.cattod.2012.04.044

    Article  Google Scholar 

  • Bail A, dos Santos VC, de Freitas MR, Ramos LP, Schreiner WH, Ricci GP, Ciuffi KJ, Nakagaki S (2013) Investigation of a molybdenum-containing silica catalyst synthesized by the sol-gel process in heterogeneous catalytic esterification reactions using methanol and ethanol. Appl Catal B-Environ 130:314–324. doi:10.1016/j.apcatb.2012.11.009

    Article  Google Scholar 

  • Banković-Ilić IB, Stamenković OS, Veljković VB (2012) Biodiesel production from non-edible plant oils. Renew Sust Energ Rev 16(6):3621–3647. doi:10.1016/j.rser.2012.03.002

    Article  Google Scholar 

  • Bernal JM, Lozano P, Garcia-Verdugo E, Burguete MI, Sanchez-Gomez G, Lopez-Lopez G, Pucheault M, Vaultier M, Luis SV (2012) Supercritical synthesis of biodiesel. Molecules 17(7):8696–8719. doi:10.3390/molecules17078696

    Article  Google Scholar 

  • Bertoldi C, da Silva C, Bernardon JP, Corazza ML, Cardozo FL, Oliveira JV, Corazza FC (2009) Continuous production of biodiesel from soybean oil in supercritical ethanol and carbon dioxide as cosolvent. Energ Fuel 23(10):5165–5172. doi:10.1021/ef900402r

    Article  Google Scholar 

  • Bharathiraja B, Chakravarthy M, Kumar RR, Yuvaraj D, Jayamuthunagai J, Kumar RP, Palani S (2014) Biodiesel production using chemical and biological methods—a review of process, catalyst, acyl acceptor, source and process variables. Renew Sust Energ Rev 38:368–382. doi:10.1016/j.rser.2014.05.084

    Article  Google Scholar 

  • Boey PL, Maniam GP, Abd Hamid S (2011) Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: a review. Chem Eng J 168(1):15–22. doi:10.1016/j.cej.2011.01.009

    Article  Google Scholar 

  • Borugadda VB, Goud VV (2012) Biodiesel production from renewable feedstocks: status and opportunities. Renew Sust Energ Rev 16(7):4763–4784. doi:10.1016/j.rser.2012.04.010

    Article  Google Scholar 

  • Bowman M, Hilligoss D, Rasmussen S, Thomas R (2006) Biodiesel: a renewable and biodegradable fuel. Hydrocarb Process 85(2):103–106

    Google Scholar 

  • Brahmkhatri V, Patel A (2012) Esterification of lauric acid with butanol-1 over H3PW12O40 supported on MCM-41. Fuel 102:72–77. doi:10.1016/j.fuel.2012.05.053

    Article  Google Scholar 

  • Bruylants P, Munaut A, Poncelet G, Ladriere J, Meyers J, Fripiat J (1980) Ir and Mossbauer study of iron glycerolates. J Inorg Nucl Chem 42(11):1603–1611. doi:10.1016/0022-1902(80)80324-1

    Article  Google Scholar 

  • Camacho L, Carvalho LG, Britto PP, Santos RTP, Aranda DAG (2005) Efeito da Natureza e Concentração de Ácidos Homogêneos na Esterificação de Ácidos Graxos. Paper presented at the 3th Congresso Brasileiro de P&D em Petróleo e Gás, Salvador

    Google Scholar 

  • Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. T ASAE 44(6):1429–1436

    Article  Google Scholar 

  • Cao H, Zhang Z, Wu X, Miao X (2013) Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification. Biomed Res Int 2013:930686. doi:10.1155/2013/930686

    Google Scholar 

  • Carey FA (2011) Química Inorgânica, vol 2. 7 th edn. AMGH, Porto Alegre

    Google Scholar 

  • Carvalho Júnior RM, Vargas JVC, Ramos LP, Marino CEB, Torres JCL (2011) Microalgae biodiesel via in situ methanolysis. J Chem Technol Biot 86(11):1418–1427. doi:10.1002/jctb.2652

    Article  Google Scholar 

  • Chen CL, Huang CC, Ho KC, Hsiao PX, Wu MS, Chang JS (2015) Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes. Bioresour Technol 194:179–186. doi:10.1016/j.biortech.2015.07.021

    Article  Google Scholar 

  • Cho S, Kim J, Park H-C, Heo E (2015) Incentives for waste cooking oil collection in South Korea: a contingent valuation approach. Resour Conserv Recy 99:63–71. doi:10.1016/j.resconrec.2015.04.003

    Article  Google Scholar 

  • Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Technol 38(4):291–325. doi:10.1080/15422110903327919

    Article  Google Scholar 

  • Cordeiro CS, Arizaga GGC, Ramos LP, Wypych F (2008) A new zinc hydroxide nitrate heterogeneous catalyst for the esterification of free fatty acids and the transesterification of vegetable oils. Catal Commun 9(11–12):2140–2143. doi:10.1016/j.catcom.2008.04.015

    Article  Google Scholar 

  • Cordeiro CS, da Silva FR, Wypych F, Ramos LP (2011) Catalisadores heterogêneos para a produção de monoésteres graxos (biodiesel). Quim Nova 34(3):477–486

    Article  Google Scholar 

  • Corma A, Garcia H (2003) Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem Rev 103(11):4307–4365. doi:10.1021/cr030680z

    Article  Google Scholar 

  • Cynthia OB, Lee KT (2011) Feasibility of Jatropha oil for biodiesel: economic analysis. Paper presented at the World Renewable Energy Congress, Linköping—Sweden

    Google Scholar 

  • da Cunha ME, Krause LC, Moraes MSA, Faccini CS, Jacques RA, Almeida SR, Rodrigues MRA, Caramão EB (2009) Beef tallow biodiesel produced in a pilot scale. Fuel Process Technol 90(4):570–575. doi:10.1016/j.fuproc.2009.01.001

    Article  Google Scholar 

  • da Rós PCM, de Castro HF, Carvalho AKF, Soares CMF, de Moraes FF, Zanin GM (2012) Microwave-assisted enzymatic synthesis of beef tallow biodiesel. J Ind Microbiol Biotechnol 39(4):529–536. doi:10.1007/s10295-011-1059-8

    Google Scholar 

  • da Silva Lisboa F, da Silva FR, Ramos LP, Wypych F (2013) Zinc monoglycerolate as highly active and reusable catalyst in the methyl transesterification of refined soybean oil. Catal Lett 143(11):1235–1239

    Article  Google Scholar 

  • Dabdoub MJ, Bronzel JL, Rampin MA (2009) Biodiesel: visão crítica do status atual e perspectivas na academia e na indústria. Quim Nova 32(2):776–792

    Article  Google Scholar 

  • de Jong MC, Feijt R, Zondervan E, Nijhuis TA, de Haan AB (2009) Reaction kinetics of the esterification of myristic acid with isopropanol and n-propanol using p-toluene sulphonic acid as catalyst. Appl Catal A 365(1):141–147. doi:10.1016/j.apcata.2009.06.009

    Article  Google Scholar 

  • de Lima AL, Mbengue A, San Gil RA, Ronconi CM, Mota CJ (2014) Synthesis of amine-functionalized mesoporous silica basic catalysts for biodiesel production. Catal Today 226:210–216

    Article  Google Scholar 

  • de Paiva EJ, Corazza ML, Sierakowski MR, Warna J, Murzin DY, Wypych F, Salmi T (2015a) Influence of two different alcohols in the esterification of fatty acids over layered zinc stearate/palmitate. Bioresour Technol 193:337–344. doi:10.1016/j.biortech.2015.06.079

    Article  Google Scholar 

  • de Paiva EJM, Sterchele S, Corazza ML, Murzin DY, Wypych F, Salmi T (2015b) Esterification of fatty acids with ethanol over layered zinc laurate and zinc stearate—kinetic modeling. Fuel 153:445–454. doi:10.1016/j.fuel.2015.03.021

    Article  Google Scholar 

  • Demirbas A (2007) Importance of biodiesel as transportation fuel. Energ Policy 35(9):4661–4670. doi:10.1016/j.enpol.2007.04.003

    Article  Google Scholar 

  • Di Serio M, Tesser R, Dimiccoli M, Cammarota F, Nastasi M, Santacesaria E (2005) Synthesis of biodiesel via homogeneous Lewis acid catalyst. J Mol Catal A-Chem 239(1–2):111–115. doi:10.1016/j.molcata.2005.05.041

    Article  Google Scholar 

  • Di Serio M, Tesser R, Pengmei L, Santacesaria E (2008) Heterogeneous catalysts for biodiesel production. Energ Fuel 22(1):207–217. doi:10.1021/ef700250g

    Article  Google Scholar 

  • dos Santos VC, Bail A, Okada HdO, Ramos LP, Ciuffi KJ, Lima OJ, Nakagaki S (2011) Methanolysis of soybean oil using tungsten-containing heterogeneous catalysts. Energ Fuel 25(7):2794–2802. doi:10.1021/ef200055j

    Article  Google Scholar 

  • dos Santos VC, Wilson K, Lee AF, Nakagaki S (2015) Physicochemical properties of WOx/ZrO2 catalysts for palmitic acid esterification. Appl Catal B-Environ 162:75–84. doi:10.1016/j.apcatb.2014.06.036

    Article  Google Scholar 

  • EIA (2013) International energy outlook. U.S Energy Administration. http://www.eia.gov/forecasts/ieo/. Accessed 26 Aug 2015

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92(5):405–416. doi:10.1016/s1389-1723(01)80288-7

    Article  Google Scholar 

  • Gallo JMR, Pastore HO, Schuchardt U (2008) Study of the effect of the base, the silica and the niobium sources on the [Nb]-MCM-41 synthesized at room temperature. J Non-Cryst Solids 354(15–16):1648–1653. doi:10.1016/j.jnoncrysol.2007.10.010

    Article  Google Scholar 

  • García-Sancho C, Moreno-Tost R, Mérida-Robles JM, Santamaría-González J, Jiménez-López A, Maireles-Torres P (2011) Niobium-containing MCM-41 silica catalysts for biodiesel production. Appl Catal B-Environ 108–109:161–167. doi:10.1016/j.apcatb.2011.08.025

    Article  Google Scholar 

  • Gole VL, Gogate PR (2012) Intensification of synthesis of biodiesel from nonedible oils using sonochemical reactors. Ind Eng Chem Res 51(37):11866–11874. doi:10.1021/ie2029442

    Article  Google Scholar 

  • Gonçalves AL, Pires JCM, Simões M (2013) Green fuel production: processes applied to microalgae. Environ Chem Lett 11(4):315–324. doi:10.1007/s10311-013-0425-3

    Article  Google Scholar 

  • Gopal KN, Pal A et al (2014) Investigation of emissions and combustion characteristics of a CI engine fueled with waste cooking oil methyl ester and diesel blends. Alexandria Eng J 53(2):281–287

    Google Scholar 

  • Granados ML, Poves MDZ, Alonso DM, Mariscal R, Galisteo FC, Moreno-Tost R, Santamaria J, Fierro JLG (2007) Biodiesel from sunflower oil by using activated calcium oxide. Appl Catal B-Environ 73(3–4):317–326. doi:10.1016/j.apcatb.2006.12.017

    Article  Google Scholar 

  • Guldhe A, Singh B, Mutanda T, Perrnaul K, Bux F (2015) Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew Sust Energ Rev 41:1447–1464. doi:10.1016/j.rser.2014.09.035

    Article  Google Scholar 

  • Guldhe A, Singh B, Rawat I, Ramluckan K, Bux F (2014) Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel 128:46–52. doi:10.1016/j.fuel.2014.02.059

    Article  Google Scholar 

  • Haas MJ (2005) Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Process Technol 86(10):1087–1096. doi:10.1016/j.fuproc.2004.11.004

    Article  MathSciNet  Google Scholar 

  • Hambley TW, Snow MR (1983) The crystal and molecular-structure of Zinc(Ii) monoglycerolate. Aust J Chem 36(6):1249–1253. doi:10.1071/CH9831249

    Article  Google Scholar 

  • Hasheminejad M, Tabatabaei M, Mansourpanah Y, Khatami far M, Javani A (2011) Upstream and downstream strategies to economize biodiesel production. Bioresour Technol 102(2):461–468. doi:10.1016/j.biortech.2010.09.094

    Article  Google Scholar 

  • Hay JF (2014) Soybean as a biodiesel feedstock. Nebraska University, Lincon

    Google Scholar 

  • Helwani Z, Aziz N, Bakar MZA, Mukhtar H, Kim J, Othman MR (2013) Conversion of Jatropha curcas oil into biodiesel using re-crystallized hydrotalcite. Energ Convers Manage 73:128–134. doi:10.1016/j.enconman.2013.04.004

    Article  Google Scholar 

  • ICCT (2013) Vegetable oil markets and the EU biofuel. International Council on Clean Transportation

    Google Scholar 

  • IEA (2014) Worldwide engagement for sustainable energy strategies. vol 2014. International Energy Agency

    Google Scholar 

  • Iglesias J, Melero JA, Bautista LF, Morales G, Sanchez-Vazquez R (2014) Continuous production of biodiesel from low grade feedstock in presence of Zr-SBA-15: catalyst performance and resistance against deactivation. Catal Today 234:174–181. doi:10.1016/j.cattod.2014.01.004

    Article  Google Scholar 

  • Imahara H, Minami E, Hari S, Saka S (2008) Thermal stability of biodiesel in supercritical methanol. Fuel 87(1):1–6. doi:10.1016/j.fuel.2007.04.003

    Article  Google Scholar 

  • Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351. doi:10.1146/annurev.micro.53.1.315

    Article  Google Scholar 

  • Jain S, Sharma MP (2010) Prospects of biodiesel from Jatropha in India: a review. Renew Sust Energ Rev 14(2):763–771. doi:10.1016/j.rser.2009.10.005

    Article  Google Scholar 

  • Jayasinghe P, Hawboldt K (2012) A review of bio-oils from waste biomass: focus on fish processing waste. Renew Sust Energ Rev 16(1):798–821. doi:10.1016/j.rser.2011.09.005

    Article  Google Scholar 

  • Juan JC, Kartika DA, Wu TY, Hin TY (2011) Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview. Bioresour Technol 102(2):452–460. doi:10.1016/j.biortech.2010.09.093

    Article  Google Scholar 

  • Kawashima A, Matsubara K, Honda K (2008) Development of heterogeneous base catalysts for biodiesel production. Bioresour Technol 99(9):3439–3443. doi:10.1016/j.biortech.2007.08.009

    Article  Google Scholar 

  • Kawashima A, Matsubara K, Honda K (2009) Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresour Technol 100(2):696–700. doi:10.1016/j.biortech.2008.06.049

    Article  Google Scholar 

  • Kelkar MA, Gogate PR, Pandit AB (2007) Cavitation as a novel tool for process intensification of biodiesel synthesis. Paper presented at the Proceedings of the 6th International Symposium on Catalysis in Multiphase Reactors, Pune, India

    Google Scholar 

  • Kiss AA (2010) Separative reactors for integrated production of bioethanol and biodiesel. Comput Chem Eng 34(5):812–820. doi:10.1016/j.compchemeng.2009.09.005

    Article  MathSciNet  Google Scholar 

  • Kiss AA (2011) Heat-integrated reactive distillation process for synthesis of fatty esters. Fuel Process Technol 92(7):1288–1296. doi:10.1016/j.fuproc.2011.02.003

    Article  Google Scholar 

  • Kiss AA, Dimian AC, Rothenberg G (2008) Biodiesel by catalytic reactive distillation powered by metal oxides. Energ Fuel 22(1):598–604. doi:10.1021/ef700265y

    Article  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energ Environ Sci 2(7):759. doi:10.1039/b903941d

    Article  Google Scholar 

  • Kobayashi J, Mori Y, Kobayashi S (2006) Multiphase organic synthesis in microchannel reactors. Chem Asian J 1(1–2):22–35. doi:10.1002/asia.200600058

    Article  Google Scholar 

  • Kondamudi N, Strull J, Misra M, Mohapatra SK (2009) A green process for producing biodiesel from feather meal. J Agric Food Chem 57(14):6163–6166. doi:10.1021/jf900140e

    Article  Google Scholar 

  • Kouzu M, J-S Hidaka (2012) Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review. Fuel 93:1–12. doi:10.1016/j.fuel.2011.09.015

    Article  Google Scholar 

  • Kouzu M, J-S Hidaka, Komichi Y, Nakano H, Yamamoto M (2009a) A process to transesterify vegetable oil with methanol in the presence of quick lime bit functioning as solid base catalyst. Fuel 88(10):1983–1990. doi:10.1016/j.fuel.2009.03.013

    Article  Google Scholar 

  • Kouzu M, Hidaka J, Wakabayashi K, Tsunomori M (2010a) Solid base catalysis of calcium glyceroxide for a reaction to convert vegetable oil into its methyl esters. Appl Catal a-Gen 390(1–2):11–18. doi:10.1016/j.apcata.2010.09.029

    Article  Google Scholar 

  • Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J (2008a) Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87(12):2798–2806. doi:10.1016/j.fuel.2007.10.019

    Article  Google Scholar 

  • Kouzu M, Kasuno T, Tajika M, Yamanaka S, Hidaka J (2008b) Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol. Appl Catal a-Gen 334(1–2):357–365. doi:10.1016/j.apcata.2007.10.023

    Article  Google Scholar 

  • Kouzu M, Tsunomori M, Yamanaka S, Hidaka J (2010b) Solid base catalysis of calcium oxide for a reaction to convert vegetable oil into biodiesel. Adv Powder Technol 21(4):488–494. doi:10.1016/j.apt.2010.04.007

    Article  Google Scholar 

  • Kouzu M, Yamanaka S, Hidaka J, Tsunomori M (2009b) Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol. Appl Catal a-Gen 355(1–2):94–99. doi:10.1016/j.apcata.2008.12.003

    Article  Google Scholar 

  • Kulkarni MG, Dalai AK (2006) Waste cooking oil an economical source for biodiesel: a review. Ind Eng Chem Res 45(9):2901–2913. doi:10.1021/ie0510526

    Article  Google Scholar 

  • Kumar D, Kumar G, Johari R, Kumar P (2012) Fast, easy ethanomethanolysis of Jatropha curcus oil for biodiesel production due to the better solubility of oil with ethanol in reaction mixture assisted by ultrasonication. Ultrason Sonochem 19(4):816–822. doi:10.1016/j.ultsonch.2011.11.004

    Article  Google Scholar 

  • Kumar D, Kumar G, Poonam Singh CP (2010) Fast, easy ethanolysis of coconut oil for biodiesel production assisted by ultrasonication. Ultrason Sonochem 17(3):555–559. doi:10.1016/j.ultsonch.2009.10.018

    Article  Google Scholar 

  • Kumari A, Mahapatra P, Garlapati VK, Banerjee R (2009) Enzymatic transesterification of Jatropha oil. Biotechnol Biofuels 2(1):1. doi:10.1186/1754-6834-2-1

    Article  Google Scholar 

  • Lacouture F, Peultier J, Francois M, Steinmetz J (2000) Anhydrous polymeric zinc(II) octanoate. Acta Crystallogr C 56(Pt 5):556–557. doi:10.1107/S0108270100001876

    Article  Google Scholar 

  • Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481. doi:10.1021/es900705j

    Google Scholar 

  • Lee DH (2011) Algal biodiesel economy and competition among bio-fuels. Bioresour Technol 102(1):43–49. doi:10.1016/j.biortech.2010.06.034

    Article  Google Scholar 

  • León-Reina L, Cabeza A, Rius J, Maireles-Torres P, Alba-Rubio AC, López Granados M (2013) Structural and surface study of calcium glyceroxide, an active phase for biodiesel production under heterogeneous catalysis. J Catal 300:30–36. doi:10.1016/j.jcat.2012.12.016

    Article  Google Scholar 

  • Lisboa FD, Gardolinski JEFD, Cordeiro CS, Wypych F (2012) Layered metal laurates as active catalysts in the methyl/ethyl esterification reactions of lauric acid. J Brazil Chem Soc 23(1):46–U379. doi:10.1590/s0103-50532012000100008

    Article  Google Scholar 

  • Lisboa FdS, Silva FRd, Cordeiro CS, Ramos LP, Wypych F (2014) Metal glycerolates as catalysts in the transesterification of refined soybean oil with methanol under reflux conditions. J Brazil Chem Soc. doi:10.5935/0103-5053.20140144

    Google Scholar 

  • Liu F, Zheng A, Noshadi I, Xiao F-S (2013) Design and synthesis of hydrophobic and stable mesoporous polymeric solid acid with ultra strong acid strength and excellent catalytic activities for biomass transformation. Appl Catal B-Environ 136–137:193–201. doi:10.1016/j.apcatb.2013.01.063

    Article  Google Scholar 

  • Lotti M, Pleiss J, Valero F, Ferrer P (2015) Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel. Biotechnol J 10(1):22–30. doi:10.1002/biot.201400158

    Article  Google Scholar 

  • Luo Y, Zheng Y, Jiang Z, Ma Y, Wei D (2006) A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Appl Microbiol Biotechnol 73(2):349–355. doi:10.1007/s00253-006-0478-3

    Article  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review1 journal series #12109, Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln. 1. Bioresour Technol 70(1):1–15. doi:10.1016/s0960-8524(99)00025-5

    Article  Google Scholar 

  • Marchetti JM (2010) Biodiesel production technologies, 1st edn. Nova Science Publisher Inc., New York

    Google Scholar 

  • Marchetti JM (2012) A summary of the available technologies for biodiesel production based on a comparison of different feedstock’s properties. J Therm Anal 90(3):157–163. doi:10.1016/j.psep.2011.06.010

    Google Scholar 

  • Marchetti JM (2013) Influence of economical variables on a supercritical biodiesel production process. Energ Convers Manage 75:658–663. doi:10.1016/j.enconman.2013.07.039

    Google Scholar 

  • Marchetti JM, Errazu AF (2008) Technoeconomic study of supercritical biodiesel production plant. Energ Convers Manage 49(8):2160–2164. doi:10.1016/j.enconman.2008.02.002

    Article  Google Scholar 

  • Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sust Energ Rev 11(6):1300–1311. doi:10.1016/j.rser.2005.08.006

    Article  Google Scholar 

  • Marulanda VF, Anitescu G, Tavlarides LL (2010) Investigations on supercritical transesterification of chicken fat for biodiesel production from low-cost lipid feedstocks. J Supercrit Fluid 54(1):53–60. doi:10.1016/j.supflu.2010.04.001

    Article  Google Scholar 

  • Melero JA, Iglesias J, Morales G (2009) Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem 11(9):1285–1308. doi:10.1039/b902086a

    Article  Google Scholar 

  • Mendelovici E, Sagarzazu A, Villalba R (2014) Comparative thermal transformations of synthetic Fe–Mn glycerate (alkoxides). J Therm Anal 40(3):1115–1122. doi:10.1007/bf02546872

    Article  Google Scholar 

  • Mendelovici E, Villalba R, Sagarzazu A (1990) Synthesis and characteristics of Fe–Mn glycerate (alkoxides), new precursors of ferrite structures. J Mater Sci Lett 9(1):28–31. doi:10.1007/Bf00722859

    Article  Google Scholar 

  • Milledge JJ, Heaven S (2012) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Bio/Technol 12(2):165–178. doi:10.1007/s11157-012-9301-z

    Article  Google Scholar 

  • Modi MK, Reddy JR, Rao BV, Prasad RB (2007) Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour Technol 98(6):1260–1264. doi:10.1016/j.biortech.2006.05.006

    Article  Google Scholar 

  • Modi MK, Reddy JRC, Rao BVSK, Prasad RBN (2006) Lipase-mediated transformation of vegetable oils into biodiesel using propan-2-ol as acyl acceptor. Biotechnol Lett 28(9):637–640. doi:10.1007/s10529-006-0027-2

    Article  Google Scholar 

  • Mota CJA, Da Silva CXA, Gonçalves VLC (2009) Gliceroquímica: novos produtos e processos a partir da glicerina de produção de biodiesel. Quim Nova 32(3):639–648

    Article  Google Scholar 

  • Naima K, Liazid A (2013) Waste oils as alternative fuel for diesel engine: a review. J Petroleum Technol Altern Fuels 4(3):30–43

    Google Scholar 

  • Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96(7):769–777. doi:10.1016/j.biortech.2004.05.029

    Article  Google Scholar 

  • Noureddini H, Harkey D, Medikonduru V (1998) A continuous process for the conversion of vegetable oils into methyl esters of fatty acids. J Am Oil Chem Soc 75(12):1775–1783. doi:10.1007/s11746-998-0331-1

    Article  Google Scholar 

  • Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102(10):3641–3666. doi:10.1021/cr0103569

    Article  Google Scholar 

  • Olivares-Carrillo P, Quesada-Medina J (2012) Thermal decomposition of fatty acid chains during the supercritical methanol transesterification of soybean oil to biodiesel. J Supercrit Fluid 72:52–58. doi:10.1016/j.supflu.2012.08.012

    Article  Google Scholar 

  • Ong LK, Kurniawan A, Suwandi AC, Lin CX, Zhao XS, Ismadji S (2013) Transesterification of leather tanning waste to biodiesel at supercritical condition: Kinetics and thermodynamics studies. J Supercrit Fluid 75:11–20. doi:10.1016/j.supflu.2012.12.018

    Article  Google Scholar 

  • Paiva EJ, da Silva ML, Barboza JC, de Oliveira PC, de Castro HF, Giordani DS (2013) Non-edible babassu oil as a new source for energy production-a feasibility transesterification survey assisted by ultrasound. Ultrason Sonochem 20(3):833–838. doi:10.1016/j.ultsonch.2012.11.003

    Article  Google Scholar 

  • Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sust Energ Rev 15(3):1513–1524. doi:10.1016/j.rser.2010.11.037

    Article  Google Scholar 

  • Peterson CL, Cook JL, Thompson JC, Taberski JS (2002) Continuous flow biodiesel production. Appl Eng Agric 18(1):5–11

    Article  Google Scholar 

  • Pirez C, Lee AF, Jones C, Wilson K (2014) Can surface energy measurements predict the impact of catalyst hydrophobicity upon fatty acid esterification over sulfonic acid functionalised periodic mesoporous organosilicas? Catal Today 234:167–173. doi:10.1016/j.cattod.2014.01.042

    Article  Google Scholar 

  • Pizarro AVL, Park EY (2003) Lipase-catalyzed production of biodiesel fuel from vegetable oils contained in waste activated bleaching earth. Process Biochem 38(7):1077–1082

    Article  Google Scholar 

  • Qiu ZY, Zhao LN, Weather L (2010) Process intensification technologies in continuous biodiesel production. Chem Eng Process 49(4):323–330. doi:10.1016/j.cep.2010.03.005

    Article  Google Scholar 

  • Quesada-Medina J, Olivares-Carrillo P (2011) Evidence of thermal decomposition of fatty acid methyl esters during the synthesis of biodiesel with supercritical methanol. J Supercrit Fluid 56(1):56–63. doi:10.1016/j.supflu.2010.11.016

    Article  Google Scholar 

  • Radoslovich EW, Raupach MR, Slade PG, Taylor RM (1970) Crystalline cobalt, zinc, manganese, and iron alkoxides of glycerol. Aust J Chem 23(10):1963. doi:10.1071/ch9701963

    Article  Google Scholar 

  • Raja SA, Smart DSR, Lee CLR (2011) Biodiesel production from Jatropha oil and its characterization. Res J Chem Sci 1(1):81–87

    Google Scholar 

  • Ramos TR, Gomes MI, Barbosa-Povoa AP (2013) Planning waste cooking oil collection systems. Waste Manag 33(8):1691–1703. doi:10.1016/j.wasman.2013.04.005

    Article  Google Scholar 

  • Ramos LP, Brugnago RJ, Silva FR, Cordeiro CS, Wypych F (2015) Simultaneous esterification and transesterification of acid oils using layered zinc carboxylates as bifunctional catalysts. Quim Nova 38(1):46–54. doi:10.5935/0100-4042.20140274

  • Rathmann R, Szklo A, Schaeffer R (2010) Land use competition for production of food and liquid biofuels: an analysis of the arguments in the current debate. Renew Energ 35(1):14–22. doi:10.1016/j.renene.2009.02.025

    Article  Google Scholar 

  • Reinoso DM, Damiani DE, Tonetto GM (2014) Zinc glycerolate as a novel heterogeneous catalyst for the synthesis of fatty acid methyl esters. Appl Catal B-Environ 144:308–316. doi:10.1016/j.apcatb.2013.07.026

    Article  Google Scholar 

  • Reitze AW Jr (1993) Regulation on fuels and fuel additives under section 211 of the clean air act. TulSa lJ 29:485

    Google Scholar 

  • Reyero I, Arzamendi G, Gandia LM (2014) Heterogenization of the biodiesel synthesis catalysis: CaO and novel calcium compounds as transesterification catalysts. Chem Eng Res Des 92(8):1519–1530. doi:10.1016/j.cherd.2013.11.017

    Article  Google Scholar 

  • Rico JAP, Sauer IL (2015) A review of Brazilian biodiesel experiences. Renew Sust Energ Rev 45:513–529. doi:10.1016/j.rser.2015.01.028

    Article  Google Scholar 

  • Robles-Medina A, Gonzalez-Moreno PA, Esteban-Cerdan L, Molina-Grima E (2009) Biocatalysis: towards ever greener biodiesel production. Biotechnol Adv 27(4):398–408. doi:10.1016/j.biotechadv.2008.10.008

    Article  Google Scholar 

  • Rodrique L, Delvaux G, Dardenne A (1978) Synthèse à haute température d’un glycérolate de fer au départ d’oxalate ferreux et ferrique. Powder Technol 19(1):93–101. doi:10.1016/0032-5910(78)80076-x

    Article  Google Scholar 

  • Ros PC, Castro HF, Carvalho AK, Soares CM, Moraes FF, Zanin GM (2012) Microwave-assisted enzymatic synthesis of beef tallow biodiesel. J Ind Microbiol Biotechnol 39(4):529–536. doi:10.1007/s10295-011-1059-8

    Article  Google Scholar 

  • Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98(3):648–653. doi:10.1016/j.biortech.2006.02.021

    Article  Google Scholar 

  • Sahoo PK, Das LM (2009) Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils. Fuel 88(9):1588–1594. doi:10.1016/j.fuel.2009.02.016

    Article  Google Scholar 

  • Sajid Z, Khan F, Zhang Y (2016) Process simulation and life cycle analysis of biodiesel production. Renew Energ 85:945–952. doi:10.1016/j.renene.2015.07.046

    Article  Google Scholar 

  • Sánchez-Vázquez R, Pirez C, Iglesias J, Wilson K, Lee AF, Melero JA (2013) Zr-containing hybrid organic-inorganic mesoporous materials: hydrophobic acid catalysts for biodiesel production. Chem Cat Chem 5(4):994–1001. doi:10.1002/cctc.201200527

    Google Scholar 

  • Santos AL, Martins DU, Iha OK, Ribeiro RA, Quirino RL, Suarez PA (2010) Agro-industrial residues as low-price feedstock for diesel-like fuel production by thermal cracking. Bioresour Technol 101(15):6157–6162. doi:10.1016/j.biortech.2010.02.100

    Article  Google Scholar 

  • Schörken U, Kempers P (2009) Lipid biotechnology: industrially relevant production processes. Eur J Lipid Sci Tech 111(7):627–645. doi:10.1002/ejlt.200900057

    Article  Google Scholar 

  • Schuchardt U, Sercheli R, Vargas RM (1998) Transesterification of vegetable oils: a review. J Brazil Chem Soc 9(3):199–210

    Article  Google Scholar 

  • Shah M, Ali S, Tariq M, Khalid N, Ahmad F, Khan MA (2014) Catalytic conversion of jojoba oil into biodiesel by organotin catalysts, spectroscopic and chromatographic characterization. Fuel 118:392–397. doi:10.1016/j.fuel.2013.11.010

    Article  Google Scholar 

  • Shah S, Sharma S, Gupta MN (2004) Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energ Fuel 18(1):154–159. doi:10.1021/ef030075z

    Article  Google Scholar 

  • Singh AK, Fernando SD, Hernandez R (2007) Base-catalyzed fast transesterification of Soybean oil using ultrasonication. Energ Fuel 21(2):1161–1164. doi:10.1021/ef060507g

    Article  Google Scholar 

  • Solomons TWG, Fryhle CB (2002) Química Orgânica 2, 7th edn. LTC, Rio de Janeiro

    Google Scholar 

  • Su CH (2013a) Kinetic study of free fatty acid esterification reaction catalyzed by recoverable and reusable hydrochloric acid. Bioresour Technol 130:522–528. doi:10.1016/j.biortech.2012.12.090

    Article  Google Scholar 

  • Su CH (2013b) Recoverable and reusable hydrochloric acid used as a homogeneous catalyst for biodiesel production. Appl Energ 104:503–509. doi:10.1016/j.apenergy.2012.11.026

    Article  Google Scholar 

  • Sun H, Ding Y, Duan J, Zhang Q, Wang Z, Lou H, Zheng X (2010) Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst. Bioresour Technol 101(3):953–958. doi:10.1016/j.biortech.2009.08.089

    Article  Google Scholar 

  • Sun J, Ju J, Ji L, Zhang L, Xu N (2008) Synthesis of biodiesel in capillary microreactors. Ind Eng Chem Res 47(5):1398–1403. doi:10.1021/ie070295q

    Article  Google Scholar 

  • Taylor RM, Slade PG, Aldous GL, Wilding IR, Siddiqui O, Whitehouse MW (1992) Preparation and properties of a glycerolatocalcium complex. Aust J Chem 45(7):1179–1185. doi:10.1071/CH9921179

    Article  Google Scholar 

  • Tesser R, Di Serio M, Guida M, Nastasi M, Santacesaria E (2005) Kinetics of oleic acid esterification with methanol in the presence of triglycerides. Ind Eng Chem Res 44(21):7978–7982. doi:10.1021/ie050588o

    Article  Google Scholar 

  • Thanh LT, Okitsu K, Boi LV, Maeda Y (2012) Catalytic technologies for biodiesel fuel production and utilization of glycerol: a review. Catalysts 2(1):191–222. doi:10.3390/catal2010191

    Article  Google Scholar 

  • Thompson JC, He BB (2007) Biodiesel production using static mixers. T Asabe 50(1):161–165

    Article  Google Scholar 

  • Tomei J, Upham P (2009) Argentinean soy-based biodiesel: an introduction to production and impacts. Energ Policy 37(10):3890–3898. doi:10.1016/j.enpol.2009.05.031

    Article  Google Scholar 

  • Tong D, Hu C, Jiang K, Li Y (2010) Cetane number prediction of biodiesel from the composition of the fatty acid methyl esters. J Am Oil Chem Soc 88(3):415–423. doi:10.1007/s11746-010-1672-0

    Article  Google Scholar 

  • Tran DN, Balkus Jr KJ (2011) A perspective of recent progress in immobilization of enzymes. ACS Catal 1

    Google Scholar 

  • Tyner WE (2009) The integration of energy and agricultural markets. In: Proceedings of the 27th international association of agricultural economists conference. Beijing, China, 08/16/2009

    Google Scholar 

  • UNO (2010) United nations organization. www.un.org/english/. Accessed 26 Aug 2015

  • Usta N, Aydogan B, Con AH, Uguzdogan E, Ozkal SG (2011) Properties and quality verification of biodiesel produced from tobacco seed oil. Energ Convers Manage 52(5):2031–2039. doi:10.1016/j.enconman.2010.12.021

    Article  Google Scholar 

  • Veljković VB, Avramović JM, Stamenković OS (2012) Biodiesel production by ultrasound-assisted transesterification: State of the art and the perspectives. Renew Sust Energ Rev 16(2):1193–1209. doi:10.1016/j.rser.2011.11.022

    Article  Google Scholar 

  • Viola E, Blasi A, Valerio V, Guidi I, Zimbardi F, Braccio G, Giordano G (2012) Biodiesel from fried vegetable oils via transesterification by heterogeneous catalysis. Catal Today 179(1):185–190. doi:10.1016/j.cattod.2011.08.050

    Article  Google Scholar 

  • Wan Ghazali WNM, Mamat R, Masjuki HH, Najafi G (2015) Effects of biodiesel from different feedstocks on engine performance and emissions: a review. Renew Sust Energ Rev 51:585–602. doi:10.1016/j.rser.2015.06.031

    Article  Google Scholar 

  • Watanabe Y, Shimada Y, Sugihara A, Tominaga Y (2001) Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. J Am Oil Chem Soc 78(7):703–707. doi:10.1007/s11746-001-0329-5

    Article  Google Scholar 

  • West AH, Posarac D, Ellis N (2008) Assessment of four biodiesel production processes using HYSYS. Plant. Bioresour Technol 99(14):6587–6601. doi:10.1016/j.biortech.2007.11.046

    Article  Google Scholar 

  • Wilson K, Hardacre C, Lee AF, Montero JM, Shellard L (2008) The application of calcined natural dolomitic rock as a solid base catalyst in triglyceride transesterification for biodiesel synthesis. Green Chem 10(6):654–659. doi:10.1039/b800455b

    Article  Google Scholar 

  • Wilson K, Lee AF (2012) Rational design of heterogeneous catalysts for biodiesel synthesis. Cat Sci Tec 2(5):884. doi:10.1039/c2cy20038d

    Article  Google Scholar 

  • Zhang Y, Dube MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90(3):229–240. doi:10.1016/s0960-8524(03)00150-0

    Article  Google Scholar 

  • Zhang H, Ding J, Qiu Y, Zhao Z (2012) Kinetics of esterification of acidified oil with different alcohols by a cation ion-exchange resin/polyethersulfone hybrid catalytic membrane. Bioresour Technol 112:28–33. doi:10.1016/j.biortech.2012.02.104

    Article  Google Scholar 

  • Zhang Y, Li Y, Zhang X, Tan T (2015) Biodiesel production by direct transesterification of microalgal biomass with co-solvent. Bioresour Technol. doi:10.1016/j.biortech.2015.07.052

    Google Scholar 

  • Zhao X, Qi F, Yuan C, Du W, Liu D (2015) Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization. Renew Sust Energ Rev 44:182–197. doi:10.1016/j.rser.2014.12.021

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CNPq and CAPES (Brazil) for the financial support to carry out this study in the form of research grants (Grants 575812/2008-7, 558836/2010-0, 306920/2013-1, and 406737/2013-4) and Ph.D. scholarships for our graduate students A.S. and E.J.M.P.), respectively. The financial support of the National Institute of Science and Technology (INCT) in Energy and Environment is also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Pereira Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Paiva, E.J.M. et al. (2016). General Assessment of the Currently Available Biodiesel Production Technologies. In: Soccol, C., Brar, S., Faulds, C., Ramos, L. (eds) Green Fuels Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30205-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30205-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30203-4

  • Online ISBN: 978-3-319-30205-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics