Skip to main content

Why Are Humans Vulnerable to Alzheimer’s Disease?

  • Chapter
  • First Online:
Evolutionary Thinking in Medicine

Abstract

Alzheimer’s disease (AD) is a serious public health issue, and a treatment for the disease has been elusive. Evolutionary approaches to medicine may contribute to understanding why humans are vulnerable to AD and how to best approach research into clinical interventions. Since AD generally manifests late in life, it is often thought to be invisible to natural selection; however, an examination into APOE, the only unequivocal risk gene for AD, reveals that AD may, in fact, be subject to selection. Given this, antagonistic pleiotropy and environmental mismatch are explored as possibilities for our vulnerability to AD. In addition, the amyloid-β (Aβ) plaques and paired helical filament tau (PHFtau) neurofibrillary tangles that characterize AD are considered from the perspective of evolution. These disease hallmarks are generally thought to promote neurodegeneration in AD, but may in fact be harmless by-products of a pathological process such as oxidative stress, or even beneficial adaptations to protect the brain from actual harmful processes. The spread of misfolded Aβ and synaptic propagation of PHFtau is considered, as are comparative perspectives on AD-like patterns in nonhuman species. The implications of evolutionary thinking for clinical practice and research are evaluated, especially with regard to the caution that must be taken when directly targeting tau and amyloid, as many drug trials have recently attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thies W, Bleiler L (2013) Alzheimer’s disease facts and figures. Alzheimer’s Dement 9(2):208–245

    Article  Google Scholar 

  2. Brookmeyer R, Johnson E, Zeigler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement 3(3):186–191

    Article  Google Scholar 

  3. Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, Luchsinger JA, Ogunniyi A, Perry EK, Potocnik F, Prince M, Stewart R, Wilmo A, Zhang Z-X, Antuono P (2008) Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet 7(9):812–826

    Article  PubMed  PubMed Central  Google Scholar 

  4. Keller MC, Miller G (2006) Resolving the paradox of common, harmful, heritable metal disorders: Which evolutionary model works best? Behav Brain Sci 29:385–452

    PubMed  Google Scholar 

  5. Charlesworth B (1996) Evolution of senescence: Alzheimer’s disease and evolution. Curr Biol 6(1):20–22. doi:10.1016/S0960-9822(02)00411-6

    Article  CAS  PubMed  Google Scholar 

  6. Stearns SC, Nesse RM, Govindaraju DR, Ellison PT (2010) Evolutionary perspectives on health and medicine. Proc Natl Acad Sci 107(suppl 1):1691–1695. doi:10.1073/pnas.0914475107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PHS, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachan DR, Alberts MJ et al (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43:1467–1472

    Article  CAS  PubMed  Google Scholar 

  8. Corder EH, Saunders AM, Strittmatter WJ, Schmechel D, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923

    Article  CAS  PubMed  Google Scholar 

  9. Katzel LI, Fleg JL, Paidi M, Ragoobarsingh N, Goldberg AP (1993) ApoE4 polymorphism increases the risk for exercise-induced silent myocardial ischemia in older men. Atertio Thromb Vasc Biol 13:1495–1500

    Article  CAS  Google Scholar 

  10. Song Y, Stampfer MJ, Liu S (2004) Meta-analysis: apolipoprotein E genotypes and risk for coronary heart disease. Ann Intern Med 141(2):137–147. doi:10.7326/0003-4819-141-2-200407200-00013

    Article  PubMed  Google Scholar 

  11. Ghebremedhin E, Schultz C, Braak E, Braak H (1998) High frequency of apolipoprotein E epsilon 4 allele in young individuals with very mild Alzheimer’s disease-related neurofibrillary changes. Exp Neurol 153:152–155

    Article  CAS  PubMed  Google Scholar 

  12. Nicoll JA, Roberts GW, Graham DI (1995) Apolipoprotein e epsilon 4 allele is associated with deposition of amloid beta-protein following head injury. Nat Med 1:135–137

    Article  CAS  PubMed  Google Scholar 

  13. Koochmeshgi J, Hosseini-Mazinani SM, Seifati SM, Hosein-Pur-Nobari N, Teimoori-Toolabi L (2004) Apolipoprotein E genotype and age at menopause. Ann NY Acad Sci 1019:564–567

    Article  CAS  PubMed  Google Scholar 

  14. He L-N, Recker RR, Deng H-W, Dvornyk V (2009) A polymorphism of apolipoprotein E (APOE) gene is associated with age at natural menopause in Caucasian females. Maturitas 62:37–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanlon CS, Rubinsztein DC (1995) Arginine residues at codons 112 and 158 in the apolipoprotein E gene correspond to the ancestral state in humans. Atherosclerosis 112(1):85–90

    Article  CAS  PubMed  Google Scholar 

  16. Ashford JW (2002) Apo E4: is it the absence of good or the presence of bad? J Alzheimer’s Dis 4:141–143

    CAS  Google Scholar 

  17. Hill JM, Bhattacharjee PS, Neumann DM (2007) Apolipoprotein E alleles can contribute to the pathogenesis of numerous clinical conditions including HSV-1 corneal disease. Exp Eye Res 84:801–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sapolsky RM, Finch CE (2000) Alzheimer’s disease and some speculations about the evolution of its modifiers. Ann NY Acad Sci 924:99–103

    Article  CAS  PubMed  Google Scholar 

  19. Lahdenperä M, Russell AF, Tremblay M, Lummaa V (2010) Selection on menopause in two premodern human populations: no evidence for the mother hypothesis. Evolution 65(2):476–489

    Article  PubMed  Google Scholar 

  20. Cant MA, Johnstone RA (2008) Reproductive conflict and the separation of reproductive generations in humans. PNAS 105(14):5332–5336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lahdenperä M, Russell AF, Lummaa V (2007) Selection for long lifespan in men: Benefits of grandfathering? Proc R Soc Lond [Biol] 274(1624):2437–2444

    Article  Google Scholar 

  22. Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evol Dev 11:398–411

    Article  Google Scholar 

  23. Rose MR (1991) The evolutionary biology of aging. Oxford University Press, New York

    Google Scholar 

  24. Martin GM (2002) Gene action in the aging brain: an evolutionary biological perspective. Neurobiol Aging 23:647–654

    Article  CAS  PubMed  Google Scholar 

  25. Zetterberg H, Palmér M, Ricksten A, Poirier J, Palmqvist L, Rymo L, Zafiropoulos A, Arvanitis DA, Spandidos DA, Blennow K (2002) Influence of the apolipoprotein E 14 allele on human embryonic development. Neurosci Lett 324:189–192

    Article  CAS  PubMed  Google Scholar 

  26. Ravaja N, Räikkönen K, Lyytinen H, Lehtimäki T, Keltikangas-Järvinen L (1997) Apolipoprotein E phenotypes and cardiovascular responses to experimentally induced mental stress in adolescent boys. J Behav Med 20(6):571–587

    Article  CAS  PubMed  Google Scholar 

  27. Wozniak MA, Itzhaki RF, Faragher EB, James MW, Ryder SD, Irving WL (2002) Apolipoprotein E-epsilon 4 protects against severe liver disease caused by hepatitis C virus. Hepatology 36(2):456–463

    Article  CAS  PubMed  Google Scholar 

  28. Rusted JM, Evans SL, King SL, Dowell N, Tabet N, Tofts PS (2013) APOE e4 polymorphism in young adults is associated with improved attention and indexed by distinct neural signatures. NeuroImage 65:364–373. doi:10.1016/j.neuroimage.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  29. Bufill E, Blesa R, Agusti J (2013) Alzheimer’s disease: an evolutionary approach. J Anthropol Sci 91:135–157

    PubMed  Google Scholar 

  30. Reser JE (2009) Alzheimer’s disease and natural cognitive aging may represent adaptive metabolism reduction programs. Behav Brain Funct 5:13

    Google Scholar 

  31. Horn JL, Cattell RB (1967) Age differences in fluid and crystallized intelligence. Acta Psychol (Amst) 26:107–129. doi:10.1016/0001-6918(67)90011-X

    Article  CAS  Google Scholar 

  32. Haxby JV, Grady CL, Duara R, Schlageter N, Berg G, Rapoport SI (1986) Neocortical metabolic abnormalities precede nonmemory cognitive defects in early alzheimer’s-type dementia. Arch Neurol 43(9):882–885. doi:10.1001/archneur.1986.00520090022010

    Article  CAS  PubMed  Google Scholar 

  33. Kuusisto J, Koivisto K, Mykkänen L, Helkala E-L, Vanhanen M, Hänninen T, Kervinen K, Kesäniemi YA, Riekkinen PJ, Laakso M (1997) Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein e4 phenotype: Cross sectional population based study. BMJ 315(7115):1045–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martins IJ, Hone E, Foster JK, Sunram-Lea SI, Gnjec A, Fuller SJ, Nolan D, Gandy SE, Martins RN (2006) Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. Mol Psychiatry 11(8):721–736

    Article  CAS  PubMed  Google Scholar 

  35. de la Monte SM (2009) Insulin resistance and Alzheimer’s disease. BMB Reports 42(8):475–481

    Article  PubMed  PubMed Central  Google Scholar 

  36. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122(4):1316–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pontzer H, Raichlen DA, Wood BM, Mabulla AZP, Racette SB, Marlowe FW (2012) Hunter-gatherer energetics and human obesity. PLoS ONE 7(7):e40503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fox M, Knapp LA, Andrews PW, Fincher CL (2013) Hygiene and the world distribution of Alzheimer’s disease: epidemiological evidence for a relationship between microbial environment and age-adjusted disease burden. Evol Med Publ Health 1:173–186. doi:10.1093/emph/eot015

    Article  Google Scholar 

  39. Karran E, Mercken M, Strooper BD (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10(9):698–712

    Article  CAS  PubMed  Google Scholar 

  40. Kokjohn TA, Roher AE (2009) Antibody responses, amyloid-beta peptide remnants and clinical effects of AN-1792 immunization in patients with AD in an interrupted trial. CNS Neurol Disord Drug Targets 8(2):88–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh MN, Honig LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, B. N, Guenzler V, Miloslavsky M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR, Investigators BaCT (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. New Engl J Med 370(4):322–333

    Google Scholar 

  42. Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, Raman R, Sun X, Aisen PS, Siemers E, Liu-Seifert H, Mohs R (2014) Phase 3 trials of solanezumab for mild-to-moderate alzheimer’s disease. New Engl J Med 370(4):311–321. doi:10.1056/NEJMoa1312889

    Article  CAS  PubMed  Google Scholar 

  43. Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, He F, Sun X, Thomas RG, Aisen PS, Siemers E, Sethuraman G, Mohs R (2013) A phase 3 trial of semagacestat for treatment of alzheimer’s disease. New Engl J Med 369(4):341–350. doi:10.1056/NEJMoa1210951

    Article  CAS  PubMed  Google Scholar 

  44. Lesné S, Kotilinek L, Ashe KH (2008) Plaque-bearing mice with reduced levels of oligomeric amyloid-β assemblies have intact memory function. Neuroscience 151(3):745–749

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hefti F, Goure WF, Jerecic J, Iverson KS, Walicke PA, Krafft GA (2013) The case for soluble Aβ oligomers as a drug target in Alzheimer’s disease. Trends Pharmacol Sci 34(5):261–266. doi:10.1016/j.tips.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  46. Lee H-G, Castellani RJ, Zhu X, Perry G, Smith MA (2005) Amyloid-β in Alzheimer’s disease: the horse or the cart? Pathogenic or protective? Int J Exp Pathol 86(3):133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee H-G, Casadesus G, Zhu X, Takeda A, Perry G, Smith MA (2009) Challenging the amyloid cascade hypothesis: senile plaques and amyloid-β as protective adaptations to Alzheimer disease. Ann NY Acad Sci 1019:1–4

    Article  Google Scholar 

  48. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman BT, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD (2010) The Alzheimer’s disease-associated amyloid ß-protein is an antimicrobial peptide. PloS ONE 5:3

    Google Scholar 

  49. Glass DJ, Arnold SE (2012) Some evolutionary perspectives on Alzheimer’s disease pathogenesis and pathology. Alzheimer’s Dement 8(4):343–351. doi:10.1016/j.jalz.2011.05.2408

    Article  CAS  Google Scholar 

  50. Ewbank DC, Arnold SE (2009) Cool with plaques and tangles. New Engl J Med 360(22):2357–2359

    Article  CAS  PubMed  Google Scholar 

  51. Kamenetz F, Tomita T, Hsieh H, Seabrook GR, Borchelt D, Iwatsubo T, Sisodia SS, Malinow R (2003) APP processing and synaptic function. Neuron 37(6):925–937

    Article  CAS  PubMed  Google Scholar 

  52. Yao Z-X, Papadopoulos V (2002) Function of ß-amyloid in cholesterol transport: a lead to neurotoxicity. FASEB J 16:1677–1679

    CAS  PubMed  Google Scholar 

  53. Puzzo D, Privitera L, Leznik E, Fa M, Staniszewski A, Palmeri A, Arancio O (2008) Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28(53):14537–14545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Garcia-Osta A, Alberini CM (2009) Amyloid beta mediates memory formation. Learn Mem 16:267–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Senechal Y, Kelly PH, Dev KK (2008) Amyloid precursor protein knockout mice show age-dependent deficits in passive avoidance learning. Behav Brain Res 186(1):126–132

    Article  CAS  PubMed  Google Scholar 

  56. Castellani RJ, H-g Lee, Nunomura A, Perry G, Smith MA (2006) Neuropathology of Alzheimer disease: pathognomonic but not pathogenic. Acta Neuropathol (Berl) 111(6):503–509

    Article  Google Scholar 

  57. Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC, Wilson RS (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66(12):1837–1844

    Article  CAS  PubMed  Google Scholar 

  58. White L (2009) Brain lesions at autopsy in older Japanese-American men as related to cognitive impairment and dementia in the final years of life: a summary report from the honolulu-asia aging study. J Alzheimers Dis. doi:10.3233/JAD-2009-1178

    PubMed  Google Scholar 

  59. O’Brien RJ, Resnick SM, Zonderman AB, Ferrucci L, Crain BJ, Pletnikova O, Rudow G, Iacono D, Riudavets MA, Driscoll I, Price DL, Martin LJ, Troncoso JC (2009) Neuropathologic studies of the Baltimore longitudinal study of aging (BLSA). J Alzheimers Dis. doi:10.3233/JAD-2009-1179

    PubMed  PubMed Central  Google Scholar 

  60. Iacono D, Markesbery WR, Gross M, Pletnikova O, Rudow G, Zandi P, Troncoso JC (2009) The nun study: clinically silent AD, neuronal hypertrophy, and linguistic skills in early life. Neurology 73(9):665–673. doi:10.1212/WNL.0b013e3181b01077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18(4):351–357

    Article  CAS  PubMed  Google Scholar 

  62. Hardy JA (2003) The relationship between amyloid and tau. J Mol Neurosci 20(2):203–206

    Article  CAS  PubMed  Google Scholar 

  63. Eckert A, Schulz KL, Rhein V, Götz J (2010) Convergence of amyloid-β and tau pathologies on mitochondria in vivo. Mol Neurobiol 41(2–3):107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee HG, Perry G, Moreira PI, Garrett MR, Liu Q, Zhu X, Takeda A, Nunomura A, Smith MA (2005) Tau phosphorylation in Alzheimer’s disease: pathogen or protector? Trends Mol Med 11(4):164–169

    Google Scholar 

  65. Jucker M, Walker LC (2011) Pathogenic protein seeding in alzheimer disease and other neurodegenerative disorders. Ann Neurol 70(4):532–540. doi:10.1002/ana.22615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guo JL, Lee VMY (2014) Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 20:130–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li J, Browning S, Mahal SP, Oelschlegel AM, Weissmann C (2010) Darwinian evolution of prions in cell culture. Science 327(5967):869–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Finch CE, Sapolsky RM (1999) The evolution of Alzheimer disease, the reproductive schedule, and apoE isoforms. Neurobiol Aging 20:407–428

    Article  CAS  PubMed  Google Scholar 

  69. Kimura N, Nakamura S, Goto N, Narushima E, Hara I, Shichiri S, Saitou K, Nose M, Hayashi T, Kawamura S, Yoshikawa Y (2001) Senile plaques in an aged western lowland gorilla. Exp Anim 50(1):77–81

    Article  CAS  PubMed  Google Scholar 

  70. Rosen RF, Walker LC, LeVine H (2011) PIB binding in aged primate brain: Enrichment of high-affinity sites in humans with Alzheimer’s disease. Neurobiol Aging 32(2):223–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sarasa M, Gallego C (2006) Alzheimer-like neurodegeneration as a probable cause of cetacean stranding. FENS Forum 3

    Google Scholar 

  72. Nakayama H, Katayama K, Ikawa A, Miyawaki K, Shinozuka J, Uetsuka K, Nakamura S, Kimura N, Yoshikawa Y, Doi K (1999) Cerebral amyloid angiopathy in an aged great spotted woodpecker (Picoides major). Neurobiol Aging 20(1):53–56

    Google Scholar 

  73. Fahlström A, Yu Q, Ulfhake B (2009) Behavioral changes in aging female C57BL/6 mice. Neurobiol Aging

    Google Scholar 

  74. Landsberg G, Araujo JA (2005) Behavior problems in geriatric pets. Vet Clin Small Anim 35:675–698

    Article  Google Scholar 

  75. Maldonado TA, Jones RE, Norris DO (2000) Distribution of b-amyloid and amyloid precursor protein in the brain of spawning (senescent) salmon: a natural, brain-aging model. Brain Res 858:237–251

    Article  CAS  PubMed  Google Scholar 

  76. Yu J-T, Tan L, Hardy JA (2014) Apolipoprotein E in Alzheimer’s disease: an update. Ann Rev Neurosci 37:79–100

    Article  CAS  PubMed  Google Scholar 

  77. Nesse RM, Williams GC (1994) Why we get sick: the new science of Darwinian medicine. Times Books, New York

    Google Scholar 

  78. Nesse RM, Bergstrom CT, Ellison PT, Flier JS, Gluckman P, Govindaraju DR, Niethammer D, Omenn GS, Perlman RL, Schwartz MD, Thomas MG, Stearns SC, Valle D (2010) Making evolutionary biology a basic science for medicine. Proc Natl Acad Sci 107(suppl 1):1800–1807. doi:10.1073/pnas.0906224106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Finch CE (2010) Evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc Natl Acad Sci 107(suppl 1):1718–1724. doi:10.1073/pnas.0909606106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Terry RD, Katzman R (2001) Life span and synapses: will there be a primary senile dementia? Neurobiol Aging 22(3):347–348

    Article  CAS  PubMed  Google Scholar 

  81. Health UNIo (2014) Estimates of funding for various research, condition, and disease categories (RCDC). http://report.nih.gov/categorical_spending.aspx. Accessed 25 Aug 2014

  82. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC, Rimmler JB, Locke PA, Conneally PM, Schmader KE, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1994) Protective effect of apolipoprotein E type 2 for late-onset alzheimer’s disease. Nature Genet 7:180–184

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Glass M.A. .

Editor information

Editors and Affiliations

Glossary

APOE

A gene involved in the expression of a protein called apolipoprotein-E. This protein is implicated in transporting cholesterol through the bloodstream. There are three variants of the protein caused by different forms of the gene, known as E2, E3, and E4 or sometimes ε2, ε3, and ε4. The E3 allele is the most common. The E4 allele is associated with a higher risk of cardiovascular disease and AD than E3, whereas the E2 allele is associated with a reduced risk of AD relative to E3 [8, 82].

Amyloid-β

(pronounced “amyloid-beta”; a.k.a. beta-amyloid, Aβ) One of the proteins involved in the pathology of AD. It can take one of several forms including oligomers, which are small chainlike molecules, and plaques, which are large insoluble aggregates of Aβ that accumulate in the brains of Alzheimer’s patients. Its normal function is not well-understood, although it may be involved in immune response, cellular metabolism, or a number of other processes. Aβ is formed when a protein called amyloid precursor protein (APP) is cut by two other proteins, known as β-secretase (beta-secretase) and γ-secretase (gamma-secretase). Aβ in plaque or oligomeric form has traditionally been thought to be one of the causes of the neurodegeneration seen in Alzheimer’s disease.

Tau protein

The other protein whose abnormal processing forms the signature neurofibrillary tangle of Alzheimer’s disease. Normally, tau functions to stabilize microtubules, which support the cytoskeleton of neurons in the central nervous system. As part of its normal function, tau changes its shape via phosphorylation, a process wherein phosphate groups bind to tau and allow it to change configurations. In Alzheimer’s disease, tau becomes saturated with phosphates, a process called hyperphosphorylation, which promotes its misfolding into filamentous structures called paired helical filaments. These paired helical filaments, in turn, aggregate into neurofibrillary (i.e., “nerve fiber”) tangles, which, along with plaques, are a marker of Alzheimer’s disease. Tau tangles have been thought to play a role in neuron death.

Oxidative stress

A process caused by by-products of metabolism in which so-called reactive oxygen species or free radicals overwhelm the body’s ability to neutralize them, potentially causing damage to DNA and proteins. Reactive oxygen species are molecules or ions of oxygen that are missing one electron, making them highly reactive. Oxidative stress may play key roles in a number of neurodegenerative diseases, including Alzheimer’s disease.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glass, D.J., Arnold, S.E. (2016). Why Are Humans Vulnerable to Alzheimer’s Disease?. In: Alvergne, A., Jenkinson, C., Faurie, C. (eds) Evolutionary Thinking in Medicine. Advances in the Evolutionary Analysis of Human Behaviour. Springer, Cham. https://doi.org/10.1007/978-3-319-29716-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29716-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29714-9

  • Online ISBN: 978-3-319-29716-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics