Skip to main content

Advertisement

Log in

Roles of basophils and mast cells in cutaneous inflammation

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Mast cells and basophils are associated with T helper 2 (Th2) immune responses. Newly developed mast cell-deficient mice have provided evidence that mast cells initiate contact hypersensitivity via activating dendritic cells. Studies using basophil-deficient mice have also revealed that basophils are responsible for cutaneous Th2 skewing to haptens and peptide antigens but not to protein antigens. Recently, several studies reported the existence of innate lymphoid cells (ILCs), which differ from classic T cells in that they lack the T cell receptor. Mast cells and basophils can interact with ILCs and play some roles in the pathogenesis of Th2 responses. Basophil-derived interleukin (IL)-4 enhances the expression of the chemokine CCL11, as well as IL-5, IL-9, and IL-13 in ILC2s, leading to the accumulation of eosinophils in allergic reactions. IL-33-stimulated mast cells can play a regulatory role in the development of ILC2-mediated non-antigen-specific protease-induced acute inflammation. In this review, we discuss the recent advances in our understanding of mast cells and basophils in immunity and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Migalovich-Sheikhet H, Friedman S, Mankuta D, Levi-Schaffer F (2012) Novel identified receptors on mast cells. Front Immunol 3:238

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schneider E, Thieblemont N, De Moraes ML, Dy M (2010) Basophils: new players in the cytokine network. Eur Cytokine Netw 21:142–153

    CAS  PubMed  Google Scholar 

  3. Otsuka A, Kabashima K (2015) Mast cells and basophils in cutaneous immune responses. Allergy 70:131–140

    Article  CAS  PubMed  Google Scholar 

  4. Otsuka A, Kabashima K (2015) Contribution of basophils to cutaneous immune reactions and Th2-mediated allergic responses. Front Immunol 6:393

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gilfillan AM, Beaven MA (2011) Regulation of mast cell responses in health and disease. Crit Rev Immunol 31:475–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sonnenberg GF, Artis D (2015) Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med 21:698–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Russell ES (1979) Hereditary anemias of the mouse: a review for geneticists. Adv Genet 20:357–459

    CAS  PubMed  Google Scholar 

  8. Waskow C, Terszowski G, Costa C, Gassmann M, Rodewald HR (2004) Rescue of lethal c-KitW/W mice by erythropoietin. Blood 104:1688–1695

    Article  CAS  PubMed  Google Scholar 

  9. Puddington L, Olson S, Lefrancois L (1994) Interactions between stem cell factor and c-Kit are required for intestinal immune system homeostasis. Immunity 1:733–739

    Article  CAS  PubMed  Google Scholar 

  10. Zhou JS, Xing W, Friend DS, Austen KF, Katz HR (2007) Mast cell deficiency in Kit(W-sh) mice does not impair antibody-mediated arthritis. J Exp Med 204:2797–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feyerabend TB, Terszowski G, Tietz A, Blum C, Luche H, Gossler A et al (2009) Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms. Immunity 30:67–79

    Article  CAS  PubMed  Google Scholar 

  12. Musch W, Wege AK, Mannel DN, Hehlgans T (2008) Generation and characterization of alpha-chymase-Cre transgenic mice. Genesis 46:163–166

    Article  PubMed  Google Scholar 

  13. Scholten J, Hartmann K, Gerbaulet A, Krieg T, Muller W, Testa G et al (2008) Mast cell-specific Cre/loxP-mediated recombination in vivo. Transgenic Res 17:307–315

    Article  CAS  PubMed  Google Scholar 

  14. Dudeck A, Dudeck J, Scholten J, Petzold A, Surianarayanan S, Kohler A et al (2011) Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity 34:973–984

    Article  CAS  PubMed  Google Scholar 

  15. Feyerabend TB, Weiser A, Tietz A, Stassen M, Harris N, Kopf M et al (2011) Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity 35:832–844

    Article  CAS  PubMed  Google Scholar 

  16. Lilla JN, Chen CC, Mukai K, BenBarak MJ, Franco CB, Kalesnikoff J et al (2011) Reduced mast cell and basophil numbers and function in Cpa3-Cre; Mcl-1fl/fl mice. Blood 118:6930–6938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Otsuka A, Kubo M, Honda T, Egawa G, Nakajima S, Tanizaki H et al (2011) Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity. PLoS One 6:e25538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Voehringer D, Liang HE, Locksley RM (2008) Homeostasis and effector function of lymphopenia-induced “memory-like” T cells in constitutively T cell-depleted mice. J Immunol 180:4742–4753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ohnmacht C, Schwartz C, Panzer M, Schiedewitz I, Naumann R, Voehringer D (2010) Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 33:364–374

    Article  CAS  PubMed  Google Scholar 

  20. Kojima T, Obata K, Mukai K, Sato S, Takai T, Minegishi Y et al (2007) Mast cells and basophils are selectively activated in vitro and in vivo through CD200R3 in an IgE-independent manner. J Immunol 179:7093–7100

    Article  CAS  PubMed  Google Scholar 

  21. Obata K, Mukai K, Tsujimura Y, Ishiwata K, Kawano Y, Minegishi Y et al (2007) Basophils are essential initiators of a novel type of chronic allergic inflammation. Blood 110:913–920

    Article  CAS  PubMed  Google Scholar 

  22. Hammad H, Plantinga M, Deswarte K, Pouliot P, Willart MA, Kool M et al (2010) Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med 207:2097–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Poorafshar M, Helmby H, Troye-Blomberg M, Hellman L (2000) MMCP-8, the first lineage-specific differentiation marker for mouse basophils. Elevated numbers of potent IL-4-producing and MMCP-8-positive cells in spleens of malaria-infected mice. Eur J Immunol 30:2660–2668

    Article  CAS  PubMed  Google Scholar 

  24. Sullivan BM, Liang HE, Bando JK, Wu D, Cheng LE, McKerrow JK et al (2011) Genetic analysis of basophil function in vivo. Nat Immunol 12:527–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wada T, Ishiwata K, Koseki H, Ishikura T, Ugajin T, Ohnuma N et al (2010) Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J Clin Invest 120:2867–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mukai K, BenBarak MJ, Tachibana M, Nishida K, Karasuyama H, Taniuchi I et al (2012) Critical role of P1-Runx1 in mouse basophil development. Blood 120:76–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sawaguchi M, Tanaka S, Nakatani Y, Harada Y, Mukai K, Matsunaga Y, et al. Role of mast cells and basophils in IgE responses and in allergic airway hyperresponsiveness. J Immunol 2012.

  28. Honda T, Egawa G, Grabbe S, Kabashima K (2013) Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Invest Dermatol 133:303–315

    Article  CAS  PubMed  Google Scholar 

  29. Honda T, Otsuka A, Tanizaki H, Minegaki Y, Nagao K, Waldmann H et al (2011) Enhanced murine contact hypersensitivity by depletion of endogenous regulatory T cells in the sensitization phase. J Dermatol Sci 61:144–147

    Article  CAS  PubMed  Google Scholar 

  30. Kitawaki T, Kadowaki N, Sugimoto N, Kambe N, Hori T, Miyachi Y et al (2006) IgE-activated mast cells in combination with pro-inflammatory factors induce Th2-promoting dendritic cells. Int Immunol 18:1789–1799

    Article  CAS  PubMed  Google Scholar 

  31. Jawdat DM, Albert EJ, Rowden G, Haidl ID, Marshall JS (2004) IgE-mediated mast cell activation induces Langerhans cell migration in vivo. J Immunol 173:5275–5282

    Article  CAS  PubMed  Google Scholar 

  32. Suto H, Nakae S, Kakurai M, Sedgwick JD, Tsai M, Galli SJ (2006) Mast cell-associated TNF promotes dendritic cell migration. J Immunol 176:4102–4112

    Article  CAS  PubMed  Google Scholar 

  33. Dudeck A, Suender CA, Kostka SL, von Stebut E, Maurer M (2011) Mast cells promote Th1 and Th17 responses by modulating dendritic cell maturation and function. Eur J Immunol 41:1883–1893

    Article  CAS  PubMed  Google Scholar 

  34. Dawicki W, Jawdat DW, Xu N, Marshall JS (2010) Mast cells, histamine, and IL-6 regulate the selective influx of dendritic cell subsets into an inflamed lymph node. J Immunol 184:2116–2123

    Article  CAS  PubMed  Google Scholar 

  35. Kabashima K, Narumiya S (2003) The DP receptor, allergic inflammation and asthma. Prostaglandins Leukot Essent Fatty Acids 69:187–194

    Article  CAS  PubMed  Google Scholar 

  36. Hammad H, de Heer HJ, Soullie T, Hoogsteden HC, Trottein F, Lambrecht BN (2003) Prostaglandin D2 inhibits airway dendritic cell migration and function in steady state conditions by selective activation of the D prostanoid receptor 1. J Immunol 171:3936–3940

    Article  CAS  PubMed  Google Scholar 

  37. Otsuka A, Nakajima S, Kubo M, Egawa G, Honda T, Kitoh A et al (2013) Basophils are required for the induction of Th2 immunity to haptens and peptide antigens. Nat Commun 4:1739

    Article  PubMed  Google Scholar 

  38. Askenase PW, Van Loveren H, Kraeuter-Kops S, Ron Y, Meade R, Theoharides TC et al (1983) Defective elicitation of delayed-type hypersensitivity in W/Wv and SI/SId mast cell-deficient mice. J Immunol 131:2687–2694

    CAS  PubMed  Google Scholar 

  39. Biedermann T, Kneilling M, Mailhammer R, Maier K, Sander CA, Kollias G et al (2000) Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J Exp Med 192:1441–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Galli SJ, Hammel I (1984) Unequivocal delayed hypersensitivity in mast cell-deficient and beige mice. Science 226:710–713

    Article  CAS  PubMed  Google Scholar 

  41. Mekori YA, Galli SJ (1985) Undiminished immunologic tolerance to contact sensitivity in mast cell-deficient W/Wv and Sl/Sld mice. J Immunol 135:879–885

    CAS  PubMed  Google Scholar 

  42. Swope VB, Sauder DN, McKenzie RC, Sramkoski RM, Krug KA, Babcock GF et al (1994) Synthesis of interleukin-1 alpha and beta by normal human melanocytes. J Invest Dermatol 102:749–753

    Article  CAS  PubMed  Google Scholar 

  43. Yu N, Zhang S, Zuo F, Kang K, Guan M, Xiang L (2009) Cultured human melanocytes express functional toll-like receptors 2–4, 7 and 9. J Dermatol Sci 56:113–120

    Article  CAS  PubMed  Google Scholar 

  44. Piliponsky AM, Chen CC, Grimbaldeston MA, Burns-Guydish SM, Hardy J, Kalesnikoff J et al (2010) Mast cell-derived TNF can exacerbate mortality during severe bacterial infections in C57BL/6-KitW-sh/W-sh mice. Am J Pathol 176:926–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dudeck J, Ghouse SM, Lehmann CH, Hoppe A, Schubert N, Nedospasov SA et al (2015) Mast-cell-derived TNF Amplifies CD8(+) dendritic cell functionality and CD8(+) T cell priming. Cell Rep 13:399–411

    Article  CAS  PubMed  Google Scholar 

  46. Perrigoue JG, Saenz SA, Siracusa MC, Allenspach EJ, Taylor BC, Giacomin PR et al (2009) MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol 10:697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sokol CL, Chu NQ, Yu S, Nish SA, Laufer TM, Medzhitov R (2009) Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol 10:713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yoshimoto T, Yasuda K, Tanaka H, Nakahira M, Imai Y, Fujimori Y et al (2009) Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat Immunol 10:706–712

    Article  CAS  PubMed  Google Scholar 

  49. Nakajima S, Igyarto BZ, Honda T, Egawa G, Otsuka A, Hara-Chikuma M et al (2012) Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol 129:1048–1055, e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A (2013) CD301b(+) dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39:733–743

    Article  CAS  PubMed  Google Scholar 

  51. Gao Y, Nish SA, Jiang R, Hou L, Licona-Limon P, Weinstein JS et al (2013) Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 39:722–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Connor LM, Tang SC, Camberis M, Le Gros G, Ronchese F (2014) Helminth-conditioned dendritic cells prime CD4+ T cells to IL-4 production in vivo. J Immunol 193:2709–2717

    Article  CAS  PubMed  Google Scholar 

  53. Otsuka A, Nakajima S, Kubo M, Egawa G, Honda T, Kitoh A et al (2013) Basophils are required for the induction of Th2 immunity to haptens and peptide antigens. Nat Commun 4:1738

    Article  PubMed Central  Google Scholar 

  54. Tang H, Cao W, Kasturi SP, Ravindran R, Nakaya HI, Kundu K et al (2010) The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol 11:608–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Poulsen BC, Poulsen LK, Jensen BM (2012) Detection of MHC class II expression on human basophils is dependent on antibody specificity but independent of atopic disposition. J Immunol Methods 381:66–69

    Article  CAS  PubMed  Google Scholar 

  56. Voskamp AL, Prickett SR, Mackay F, Rolland JM, O’Hehir RE (2013) MHC class II expression in human basophils: induction and lack of functional significance. PLoS One 8:e81777

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kitzmuller C, Nagl B, Deifl S, Walterskirchen C, Jahn-Schmid B, Zlabinger GJ et al (2012) Human blood basophils do not act as antigen-presenting cells for the major birch pollen allergen Bet v 1. Allergy 67:593–600

    Article  CAS  PubMed  Google Scholar 

  58. Eckl-Dorna J, Ellinger A, Blatt K, Ghanim V, Steiner I, Pavelka M et al (2012) Basophils are not the key antigen-presenting cells in allergic patients. Allergy 67:601–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sharma M, Hegde P, Aimanianda V, Beau R, Maddur MS, Senechal H et al (2013) Circulating human basophils lack the features of professional antigen presenting cells. Sci Rep 3:1188

    PubMed  PubMed Central  Google Scholar 

  60. Annunziato F, Romagnani C, Romagnani S (2015) The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol 135:626–635

    Article  CAS  PubMed  Google Scholar 

  61. Roediger B, Weninger W (2015) Group 2 innate lymphoid cells in the regulation of immune responses. Adv Immunol 125:111–154

    Article  PubMed  Google Scholar 

  62. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H et al (2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463:540–544

    Article  CAS  PubMed  Google Scholar 

  63. Licona-Limon P, Kim LK, Palm NW, Flavell RA (2013) TH2, allergy and group 2 innate lymphoid cells. Nat Immunol 14:536–542

    Article  CAS  PubMed  Google Scholar 

  64. Mjosberg J, Bernink J, Golebski K, Karrich JJ, Peters CP, Blom B et al (2012) The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37:649–659

    Article  PubMed  Google Scholar 

  65. Hung LY, Lewkowich IP, Dawson LA, Downey J, Yang Y, Smith DE et al (2013) IL-33 drives biphasic IL-13 production for noncanonical Type 2 immunity against hookworms. Proc Natl Acad Sci U S A 110:282–287

    Article  CAS  PubMed  Google Scholar 

  66. McKenzie AN, Spits H, Eberl G (2014) Innate lymphoid cells in inflammation and immunity. Immunity 41:366–374

    Article  CAS  PubMed  Google Scholar 

  67. Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA, Sonnenberg GF, et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med 2013; 5:170ra16.

  68. Nakashima C, Otsuka A, Kitoh A, Honda T, Egawa G, Nakajima S et al (2014) Basophils regulate the recruitment of eosinophils in a murine model of irritant contact dermatitis. J Allergy Clin Immunol 134:100–107

    Article  CAS  PubMed  Google Scholar 

  69. Liang HE, Reinhardt RL, Bando JK, Sullivan BM, Ho IC, Locksley RM (2012) Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat Immunol 13:58–66

    Article  CAS  Google Scholar 

  70. Imai Y, Yasuda K, Sakaguchi Y, Haneda T, Mizutani H, Yoshimoto T et al (2013) Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci U S A 110:13921–13926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Matsuba-Kitamura S, Yoshimoto T, Yasuda K, Futatsugi-Yumikura S, Taki Y, Muto T et al (2010) Contribution of IL-33 to induction and augmentation of experimental allergic conjunctivitis. Int Immunol 22:479–489

    Article  CAS  PubMed  Google Scholar 

  72. Motomura Y, Morita H, Moro K, Nakae S, Artis D, Endo TA et al (2014) Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 40:758–771

    Article  CAS  PubMed  Google Scholar 

  73. Oboki K, Ohno T, Kajiwara N, Arae K, Morita H, Ishii A et al (2010) IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci U S A 107:18581–18586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Halim TY, Krauss RH, Sun AC, Takei F (2012) Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36:451–463

    Article  CAS  PubMed  Google Scholar 

  75. Chang YJ, Kim HY, Albacker LA, Baumgarth N, McKenzie AN, Smith DE et al (2011) Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol 12:631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B et al (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12:1055–1062

    Article  PubMed  Google Scholar 

  77. Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA et al (2011) Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 12:1045–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Roediger B, Kyle R, Yip KH, Sumaria N, Guy TV, Kim BS et al (2013) Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat Immunol 14:564–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gervais FG, Cruz RP, Chateauneuf A, Gale S, Sawyer N, Nantel F et al (2001) Selective modulation of chemokinesis, degranulation, and apoptosis in eosinophils through the PGD2 receptors CRTH2 and DP. J Allergy Clin Immunol 108:982–988

    Article  CAS  PubMed  Google Scholar 

  80. Satoh T, Moroi R, Aritake K, Urade Y, Kanai Y, Sumi K et al (2006) Prostaglandin D2 plays an essential role in chronic allergic inflammation of the skin via CRTH2 receptor. J Immunol 177:2621–2629

    Article  CAS  PubMed  Google Scholar 

  81. Xue L, Salimi M, Panse I, Mjosberg JM, McKenzie AN, Spits H et al (2014) Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol 133:1184–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brandt EB, Strait RT, Hershko D, Wang Q, Muntel EE, Scribner TA et al (2003) Mast cells are required for experimental oral allergen-induced diarrhea. J Clin Invest 112:1666–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee JB, Chen CY, Liu B, Mugge L, Angkasekwinai P, Facchinetti V, et al. IL-25 and CD4 T2 cells enhance type 2 innate lymphoid cell-derived IL-13 production, which promotes IgE-mediated experimental food allergy. J Allergy Clin Immunol 2015.

  84. Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K et al (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997–1002

    Article  CAS  PubMed  Google Scholar 

  85. Hart PH, Grimbaldeston MA, Swift GJ, Jaksic A, Noonan FP, Finlay-Jones JJ (1998) Dermal mast cells determine susceptibility to ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. J Exp Med 187:2045–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8:1095–1104

    Article  CAS  PubMed  Google Scholar 

  87. Hershko AY, Suzuki R, Charles N, Alvarez-Errico D, Sargent JL, Laurence A et al (2011) Mast cell interleukin-2 production contributes to suppression of chronic allergic dermatitis. Immunity 35:562–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Morita H, Arae K, Unno H, Miyauchi K, Toyama S, Nambu A et al (2015) An Interleukin-33-Mast cell-interleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity 43:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology and the Ministry of Health, Labour and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kabashima.

Additional information

This article is a contribution to the special issue on Basophils and Mast Cells in Immunity and Inflammation - Guest Editor: Hajime Karasuyama

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otsuka, A., Nonomura, Y. & Kabashima, K. Roles of basophils and mast cells in cutaneous inflammation. Semin Immunopathol 38, 563–570 (2016). https://doi.org/10.1007/s00281-016-0570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0570-4

Keywords

Navigation