Skip to main content
Log in

Genome-wide analysis of the barley MAPK gene family and its expression patterns in relation to Puccinia hordei infection

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Mitogen-activated protein kinases (MAPKs) have been shown to act as key regulators of stress responses in model plant and crop species. So far, however, the MAPK family has not been systematically studied in barley. Herein, we identified 16 HvMAPKs (Hv—Hordeum vulgare) based on computational analysis of barley transcriptomics and genomics databases. HvMAPKs contain all canonical MAPK domains, except for HvMPK2, which lacks a MAPK domain signature. In addition, five HvMAPKs harbor TEY and ten HvMAPKs harbor TDY dual phosphorylation motif in the activation loop. Interestingly, HvMPK2 contains a MEY instead of TEY phosphorylation motif. We classified HvMAPKs into four major plant MAPK clades based on phylogeny reconstruction and anchored all HvMAPK genes to five out of seven barley chromosomes. Furthermore, we inoculated seedlings of susceptible barley line L94 and its isolines L94-Rph3 and L94-Rph7 with rust fungus Puccinia hordei and analyzed the expression of 16 HvMAPK genes using qRT-PCR at 1–4.5 days post inoculation. In total, six HvMAPK genes exhibited significantly altered expression by P. hordei infection. The expression of HvMPK5, HvMPK6, HvMPK7 and HvMPK12 (set one genes) was strongly induced especially during effector-triggered immunity (ETI), whereas the expression of HvMPK2 and HvMPK17 (set two genes) was specifically downregulated during ETI. Yet the expression of HvMPK8 was also specifically but weakly downregulated during ETI. Overall, the expression patterns suggest that set one genes positively regulate ETI in barley–P. hordei pathosystem, whereas set two genes negatively regulate ETI and/or programmed cell death in this pathosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abass M, Morris PC (2013) The Hordeum vulgare signalling protein MAP kinase 4 is a regulator of biotic and abiotic stress responses. J Plant Physiol 170:1353–1359

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR et al (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Berriri S, Garcia AV, Frei dit N, Rozhon W et al (2012) Constitutively active mitogen-activated protein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling. Plant Cell 24:4281–4293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brodersen P, Petersen M, Bjørn Nielsen H, Zhu S et al (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546

    Article  CAS  PubMed  Google Scholar 

  • Brooks WS, Griffey CA, Steffenson BJ, Vivar HE (2000) Genes governing resistance to Puccinia hordei in thirteen spring barley accessions. Phytopathology 90:1131–1136

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signaling cascades. Nature 410:37–40

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Hackett CA, Niks RE, Hedley PE et al (2010) An eQTL analysis of partial resistance to Puccinia hordei in Barley. PLoS One. doi:10.1371/journal.pone.0008598

    Google Scholar 

  • Chen L, Hu W, Tan S, Wang M et al (2012) Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon. PLoS One. doi:10.1371/journal.pone.0046744

    Google Scholar 

  • Cheong YH, Moon BC, Kim JK, Kim CY (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961–1972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    Article  CAS  PubMed  Google Scholar 

  • del Pozo O, Pedley KF, Martin GB (2004) MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23:3072–3082

    Article  PubMed Central  PubMed  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Eckey C, Korell M, Leib K, Biedenkopf D et al (2004) Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase. Plant Mol Biol 55:1–15

    Article  CAS  PubMed  Google Scholar 

  • Eitas KT, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners and pathways. Curr Opin Plant Biol 13(4):472–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J 36:905–917

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gao M, Liu J, Bi D, Zhang Z et al (2008) MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res 18:1190–1198

    Article  CAS  PubMed  Google Scholar 

  • He C, Fong SHT, Yang D, Wang GL (1999) BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol Plant Microbe Interact 12:1064–1073

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ichimura K, Shinozaki K, Tena G, Sheen J et al (2002) Mitogen activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  CAS  Google Scholar 

  • Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K (2006) MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J Biol Chem 281:36969–36976

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2007) The plant immune system. Nature 444:323–329

    Article  Google Scholar 

  • Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4

    Article  PubMed  Google Scholar 

  • Keshet Y, Seger R (2010) The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. In: Seger R (ed) MAP kinase signaling protocols, 2nd edn. Humana Press, New York, pp 3–38

    Chapter  Google Scholar 

  • Knetsch MLW, Wang M, Snaar-Jagalska BE, Heimovaara-Dijkstra S (1996) Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell 8:1061–1067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Křenek P, Smékalová V (2014) Quantification of stress-induced mitogen-activated protein kinase expressional dynamic using reverse transcription quantitative real-time PCR. Method Mol Biol 1171:13–25

    Article  Google Scholar 

  • Lian WW, Tang YM, Gao SQ, Zhang Z, Zhao X, Zhao CP (2012) Phylogenetic analysis and expression patterns of the MAPK gene family in wheat (Triticum aestivum L.). J Integr Agric 11:1227–1235

    Article  CAS  Google Scholar 

  • Liu Q, Xue Q (2006) Computational identification and phylogenetic analysis of the MAPK gene family in Oryza sativa. Plant Physiol Bioch 45:6–14

    Article  Google Scholar 

  • Liu Y, Zhang D, Wang L, Li D (2013) Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep 31:1446–1460

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta]CT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mathre DE (1997) Compendium of barley diseases. American Phytopathological Society, St Paul

    Google Scholar 

  • Matsumoto T, Tanaka T, Sakai H, Amano N et al (2011) Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries. Plant Physiol 156:20–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Šimková H et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayer KFX, Waugh R, Langridge P, Close TJ et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    CAS  PubMed  Google Scholar 

  • Mayrose M, Bonshtien A, Sessa G (2004) LeMPK3 is a mitogen-activated protein kinase with dual specificity induced during tomato defense and wounding responses. J Biol Chem 279:14819–14827

    Article  CAS  PubMed  Google Scholar 

  • Melech-Bonfil S, Sessa G (2010) Tomato MAPKKKε is a positive regulator of cell-death signaling networks associated with plant immunity. Plant J 64:379–391

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266

    Article  CAS  PubMed  Google Scholar 

  • Mohanta TK, Arora PK, Mohanta N, Parida P, Bae H (2015) Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genom 16:58

    Article  Google Scholar 

  • Morrison DK (2012) MAP kinase pathways. Cold Spring Harb Perspect Biol 4:a011254

    Article  PubMed Central  PubMed  Google Scholar 

  • Mrízová K, Holásková E, Öz MT, Jiskrová E, Frébort I, Galuszka P (2013) Transgenic barley: a prospective tool for biotechnology and agriculture. Biotech Adv 32:137–157

    Article  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10:339–346

    Article  CAS  PubMed  Google Scholar 

  • Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H (2006) A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281:38697–38704

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Niks RE (2014) How specific is non-hypersensitive host and nonhost resistance of barley to rust and mildew fungi? J Integr Agri 13:244–254

    Article  Google Scholar 

  • Niks RE, Kuiper HJ (1983) Histology of the relation between minor and major genes for resistance of barley to leaf rust. Phytopathology 73:55–59

    Article  Google Scholar 

  • Niks RE, Rubiales D (1994) Avirulence factors corresponding to barley genes Pa3 and Pa7 which confer resistance against Puccinia hordei in rust fungi other than P. hordei. Physiol Mol Plant Pathol 45:321–331

    Article  CAS  Google Scholar 

  • Niks RE, Walther U, Jaiser H, Martínez F et al (2000) Resistance against barley leaf rust (Puccinia hordei) in West-European spring barley germplasm. Agronomie 20:769–782

    Article  Google Scholar 

  • Qi X, Niks RE, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor Appl Genet 96:1205–1215

    Article  CAS  Google Scholar 

  • Qiu JL, Zhou L, Yun BW, Nielsen HB et al (2008) Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol 148:212–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reyna JS, Yang Y (2006) Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea Infection. Mol Plant Microbe Interact 19:530–540

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  CAS  PubMed  Google Scholar 

  • Romeis T, Piedras P, Zhang S, Klessig DF et al (1999) Rapid Avr9- and Cf-9–Dependent Activation of MAP Kinases in Tobacco Cell Cultures and Leaves: convergence of Resistance Gene, Elicitor, Wound, and Salicylate Responses. Plant Cell 11:273–287

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Šamajová O, Plíhal O, Al-Yousif M, Hirt H, Šamaj J (2013a) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotech Adv 31:118–128

    Article  Google Scholar 

  • Šamajová O, Komis G, Šamaj J (2013b) Emerging topics in the cell biology of mitogen-activated protein kinases. Trends Plant Sci 18:140–148

    Article  PubMed  Google Scholar 

  • Shen X, Yuan B, Liu H, Li X, Xu C, Wang S (2010) Opposite functions of a rice mitogen-activated protein kinase during the process of resistance against Xanthomonas oryzae. Plant J 64:86–99

    CAS  PubMed  Google Scholar 

  • Shin HY, You MK, Jeung JU, Shin JS (2014) OsMPK3 is a TEY-type rice MAPK in Group C and phosphorylates OsbHLH65, a transcription factor binding to the E-box element. Plant Cell Rep 33:1343–1353

    Article  CAS  PubMed  Google Scholar 

  • Smékalová V, Doskočilová A, Komis G, Šamaj J (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotech Adv 32:2–11

    Article  Google Scholar 

  • Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7:S10

    Article  PubMed Central  PubMed  Google Scholar 

  • Song F, Goodman RM (2002) OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. Planta 215:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Song D, Chen J, Song F, Zheng Z (2006) A novel rice MAPK gene, OsBIMK2, is involved in disease-resistance responses. Plant Biol 8:587–596

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H et al (2007) MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol 143:661–669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Testerink C, Vennik M, Kijne JW, Wang M, Heimovaara-Dijkstra S (2000) Inactivation of a MAPK-like protein kinase and activation of a MBP kinase in germinating barley embryos. FEBS Lett 484:55–59

    Article  CAS  PubMed  Google Scholar 

  • Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Z, Ma H, Hong H, Yao W et al (2015) Transcriptome-based analysis of mitogen-activated protein kinase cascades in the rice response to Xanthomonas oryzae infection. Rice 8:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan B, Shen X, Li X, Xu C, Wang S (2007) Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta 226:953–960

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Klessig DF (1998) Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc Natl Acad Sci USA 95:7433–7438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Wang S (2013) Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem. Curr Opin Plant Biol 16:188–195

    Article  PubMed  Google Scholar 

  • Zhang S, Xu JR (2014) Effectors and Effector Delivery in Magnaporthe oryzae. PLoS Pathog 10(1):e1003826

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Czech Science Foundation (GACR) Grant GACR, P501/12/P455. We would like to thank Dr. Galuszka for kindly providing infrastructure for qRT-PCR and for his help and also to Petra Trčková for initial testing of qPCR efficiencies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pavel Křenek or Jozef Šamaj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by J.-H Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Křenek, P., Niks, R.E., Vels, A. et al. Genome-wide analysis of the barley MAPK gene family and its expression patterns in relation to Puccinia hordei infection. Acta Physiol Plant 37, 254 (2015). https://doi.org/10.1007/s11738-015-2010-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-2010-9

Keywords

Navigation