Skip to main content

Advertisement

Log in

Effect of whole body vibration training on bone mineral density and bone quality in adolescents with Down syndrome: a randomized controlled trial

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Adolescents with Down syndrome (DS) have poorer bone health than their peers without DS. Twenty-five adolescents with DS were randomly assigned to whole-body vibration training (WBV) or control groups. The results indicate that a 20-week WBV might be useful to improve subtotal bone mineral content and density in adolescents with DS.

Introduction

This study aims to determine the effects of 20 weeks of whole body vibration training (WBV) on bone mineral content (BMC), density (BMD), and structure variables in adolescents with Down syndrome (DS).

Methods

This randomized controlled trial of 25 adolescents (12–18 years) with DS (8 females) generated 2 non-equal groups, WBV group (n = 11) and CON group (n = 14). Using an efficacy analysis, the primary outcomes were BMC and BMD by dual-energy X-ray absorptiometry and the secondary were bone structure variables by peripheral quantitative computed tomography. A synchronous vibration platform (PowerPlate®) was used (3/week, 10 repetitions (30–60 s) 1-min rest, frequency of 25–30 Hz, and peak-to-peak displacement of 2 mm (peak acceleration 2.5–3.6 g)).

Results

WBV group improved whole body BMC 2.8 %, 95 % CI [3.5, 2.1], subtotal area, BMC, and BMD by 2.8, 4.8, and 2 %, respectively, 95 % confidence intervals (CIs) [3.4, 2.1], [6.5, 3.1], and [2.8, 1.1], respectively (all, p < 0.05), showing group by time interactions in BMC and BMD (both p < 0.05). Lumbar spine BMC and BMD also increased in the WBV group by 6.6 and 3.3 % both p < 0.05, 95 % CIs [8.6, 4.7], and [4.9, 1.7], respectively. Regarding bone structure, WBV group showed improvements in tibial BMC at 4 % (2.9 %, 95 % CI [3.0, 2.8]) and in volumetric BMD (vBMD), cortical vBMD, and cortical thickness at 66 % of the radius (by 7.0, 2.4, and 10.9 %; 95 % CIs [7.4, 6.7], [2.6, 2.3], and [12.4, 9.3], respectively) (all, p < 0.05).

Conclusions

A 20-week WBV, with this protocol, might be useful to improve subtotal BMC and BMD in adolescents with DS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bittles AH, Glasson EJ (2004) Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Dev Med Child Neurol 46:282–286

    Article  CAS  PubMed  Google Scholar 

  2. No Authors (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650.

  3. Sakadamis A, Angelopoulou N, Matziari C, Papameletiou V, Souftas V (2002) Bone mass, gonadal function and biochemical assessment in young men with trisomy 21. Eur J Obstet Gynecol Reprod Biol 100:208–212

    Article  CAS  PubMed  Google Scholar 

  4. Kao CH, Chen CC, Wang SJ, Yeh SH (1992) Bone mineral density in children with Down’s syndrome detected by dual photon absorptiometry. Nucl Med Commun 13:773–775

    Article  CAS  PubMed  Google Scholar 

  5. Baptista F, Varela A, Sardinha LB (2005) Bone mineral mass in males and females with and without Down syndrome. Osteoporos Int 16:380–388

    Article  PubMed  Google Scholar 

  6. Sepulveda D, Allison DB, Gomez JE, Kreibich K, Brown RA, Pierson RN Jr, Heymsfield SB (1995) Low spinal and pelvic bone mineral density among individuals with Down syndrome. Am J Ment Retard 100:109–114

    CAS  PubMed  Google Scholar 

  7. González-Agüero A, Vicente-Rodríguez G, Moreno LA, Casajús JA (2011) Bone mass in male and female children and adolescents with Down syndrome. Osteoporos Int 22:2151–2157

    Article  PubMed  Google Scholar 

  8. Guijarro M, Valero C, Paule B, Gonzalez-Macias J, Riancho JA (2008) Bone mass in young adults with Down syndrome. J Intellect Disabil Res 52:182–189

    Article  CAS  PubMed  Google Scholar 

  9. Angelopoulou N, Souftas V, Sakadamis A, Mandroukas K (1999) Bone mineral density in adults with Down’s syndrome. Eur Radiol 9:648–651

    Article  CAS  PubMed  Google Scholar 

  10. González-Agüero A, Vicente-Rodríguez G, Gómez-Cabello A, Ara I, Moreno LA, Casajús JA (2012) A 21-week bone deposition promoting exercise programme increases bone mass in young people with Down syndrome. Dev Med Child Neurol 54:552–556

    Article  PubMed  Google Scholar 

  11. Ferry B, Gavris M, Tifrea C, Serbanoiu S, Pop AC, Bembea M, Courteix D (2014) The bone tissue of children and adolescents with Down syndrome is sensitive to mechanical stress in certain skeletal locations: a 1-year physical training program study. Res Dev Disabil 35:2077–2084

    Article  PubMed  Google Scholar 

  12. Reza SM, Rasool H, Mansour S, Abdollah H (2013) Effects of calcium and training on the development of bone density in children with Down syndrome. Res Dev Disabil 34:4304–4309

    Article  PubMed  Google Scholar 

  13. González-Agüero A, Vicente-Rodríguez G, Moreno LA, Guerra-Balic M, Ara I, Casajús JA (2010) Health-related physical fitness in children and adolescents with Down syndrome and response to training. Scand J Med Sci Sports 20:716–724

    Article  PubMed  Google Scholar 

  14. Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46:294–305

    Article  PubMed  Google Scholar 

  15. Lips P (1997) Epidemiology and predictors of fractures associated with osteoporosis. Am J Med 103:3S–8S, discussion 8S-11S

    Article  CAS  PubMed  Google Scholar 

  16. Bauman AE (2004) Updating the evidence that physical activity is good for health: an epidemiological review 2000-2003. J Sci Med Sport 7:6–19

    Article  CAS  PubMed  Google Scholar 

  17. Vicente-Rodriguez G (2006) How does exercise affect bone development during growth? Sports Med 36:561–569

    Article  PubMed  Google Scholar 

  18. Matute-Llorente A, González-Agüero A, Gómez-Cabello A, Vicente-Rodríguez G, Casajús JA (2013) Effect of whole-body vibration therapy on health-related physical fitness in children and adolescents with disabilities: a systematic review. J Adolesc Health 54:385–396

    Article  Google Scholar 

  19. Gomez-Cabello A, Gonzalez-Aguero A, Morales S, Ara I, Casajus JA, Vicente-Rodriguez G (2014) Effects of a short-term whole body vibration intervention on bone mass and structure in elderly people. J Sci Med Sport 17:160–164

    Article  PubMed  Google Scholar 

  20. Gomez-Cabello A, Ara I, Gonzalez-Aguero A, Casajus JA, Vicente-Rodriguez G (2012) Effects of training on bone mass in older adults: a systematic review. Sports Med 42:301–325

    Article  CAS  PubMed  Google Scholar 

  21. Dalen Y, Sääf M, Nyrén S, Mattsson E, Haglund-Akerlind Y, Klefbeck B (2012) Observations of four children with severe cerebral palsy using a novel dynamic platform. A case report. Adv Physiother 14:132–139

    Article  Google Scholar 

  22. Ruck J, Chabot G, Rauch F (2010) Vibration treatment in cerebral palsy: a randomized controlled pilot study. J Musculoskelet Neuronal Interact 10:77–83

    CAS  PubMed  Google Scholar 

  23. Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C (2006) Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 21:1464–1474

    Article  PubMed  Google Scholar 

  24. Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z (2004) Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 19:360–369

    Article  PubMed  Google Scholar 

  25. Pitukcheewanont P, Safani D (2006) Extremely low-level, short-term mechanical stimulation increases cancellous and cortical bone density and muscle mass of children with low bone density: a pilot study. Endocrinologist 16:128–132

    Article  Google Scholar 

  26. Soderpalm AC, Kroksmark AK, Magnusson P, Karlsson J, Tulinius M, Swolin-Eide D (2013) Whole body vibration therapy in patients with Duchenne muscular dystrophy—a prospective observational study. J Musculoskelet Neuronal Interact 13:13–18

    PubMed  Google Scholar 

  27. González-Agüero A, Matute-Llorente A, Gómez-Cabello A, Casajús JA, Vicente-Rodríguez G (2013) Effects of whole body vibration training on body composition in adolescents with Down syndrome. Res Dev Disabil 34:1426–1433

    Article  PubMed  Google Scholar 

  28. Lam TP, Ng BK, Cheung LW, Lee KM, Qin L, Cheng JC (2012) Effect of whole body vibration (WBV) therapy on bone density and bone quality in osteopenic girls with adolescent idiopathic scoliosis: a randomized, controlled trial. Osteoporos Int 24:1623–1636

    Article  PubMed  Google Scholar 

  29. González-Agüero A, Vicente-Rodríguez G, Gómez-Cabello A, Ara I, Moreno LA, Casajús JA (2011) A combined training intervention programme increases lean mass in youths with Down syndrome. Res Dev Disabil 32:2383–2388

    Article  PubMed  Google Scholar 

  30. Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG (2012) CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int J Surg 10:28–55

    Article  PubMed  Google Scholar 

  31. Marfell-Jones M (2006) International standards for anthropometric assessment. International Society for the Advancement of Kinanthropometry. Potchefstroom, South Africa

    Google Scholar 

  32. Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51:170–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Gracia-Marco L, Ortega FB, Jimenez-Pavon D, Rodriguez G, Castillo MJ, Vicente-Rodriguez G, Moreno LA (2012) Adiposity and bone health in Spanish adolescents. The HELENA study. Osteoporos Int 23:937–947

    Article  CAS  PubMed  Google Scholar 

  34. Gomez-Bruton A, Gonzalez-Aguero A, Casajus JA, Vicente-Rodriguez G (2014) Swimming training repercussion on metabolic and structural bone development; benefits of the incorporation of whole body vibration or pilometric training; the RENACIMIENTO project. Nutr Hosp 30:399–409

    CAS  PubMed  Google Scholar 

  35. González-Agüero A, Vicente-Rodríguez G, Gómez-Cabello A, Casajús JA (2013) Cortical and trabecular bone at the radius and tibia in male and female adolescents with Down syndrome: a peripheral quantitative computed tomography (pQCT) study. Osteoporos Int 24:1035–1044

    Article  PubMed  Google Scholar 

  36. Hoffman M, Schrader J, Applegate T, Koceja D (1998) Unilateral postural control of the functionally dominant and nondominant extremities of healthy subjects. J Athl Train 33:319–322

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Szabo KA, Webber CE, Adachi JD, Tozer R, Gordon C, Papaioannou A (2011) Cortical and trabecular bone at the radius and tibia in postmenopausal breast cancer patients: a Peripheral Quantitative Computed Tomography (pQCT) study. Bone 48:218–224

    Article  CAS  PubMed  Google Scholar 

  38. Cohen J (1969) Statistical power analysis for the behavioural sciences. Academic Press, New York

    Google Scholar 

  39. Slatkovska L, Alibhai SM, Beyene J, Cheung AM (2010) Effect of whole-body vibration on BMD: a systematic review and meta-analysis. Osteoporos Int 21:1969–1980

    Article  CAS  PubMed  Google Scholar 

  40. Wu J (2013) Bone mass and density in preadolescent boys with and without Down syndrome. Osteoporos Int 24:2847–2854

    Article  CAS  PubMed  Google Scholar 

  41. Wren TA, Lee DC, Hara R, Rethlefsen SA, Kay RM, Dorey FJ, Gilsanz V (2010) Effect of high-frequency, low-magnitude vibration on bone and muscle in children with cerebral palsy. J Pediatr Orthop 30:732–738

    Article  PubMed Central  PubMed  Google Scholar 

  42. Burrows M, Liu D, Moore S, McKay H (2010) Bone microstructure at the distal tibia provides a strength advantage to males in late puberty: an HR-pQCT study. J Bone Miner Res 25:1423–1432

    PubMed  Google Scholar 

  43. Lynn HS, Lau EM, Au B, Leung PC (2005) Bone mineral density reference norms for Hong Kong Chinese. Osteoporos Int 16:1663–1668

    Article  CAS  PubMed  Google Scholar 

  44. O’Keefe K, Orr R, Huang P, Selvadurai H, Cooper P, Munns CF, Singh MA (2013) The effect of whole body vibration exposure on muscle function in children with cystic fibrosis: a pilot efficacy trial. J Clin Med Res 5:205–216

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the help of all of the adolescents and their parents who participated in the study for their understanding and dedication to the project. Specials thanks are given to Fundación Down Zaragoza and Special Olympics Aragón for their support. The authors also thank Alex R. Jenkins from the Aberystwyth University for his work of reviewing the English style and grammar. This work was supported by “Ministerio de Ciencia e Innovación” “Plan Nacional I + D + i 2009–2011 (Project DEP 2009-09183).” This project has been co-financed by “Fondo Europeo de Desarrollo Regional” (MICINN-FEDER). AML received a Grant AP12-2854 from “Ministerio de Educación Cultura y Deportes.”

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Casajús.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matute-Llorente, A., González-Agüero, A., Gómez-Cabello, A. et al. Effect of whole body vibration training on bone mineral density and bone quality in adolescents with Down syndrome: a randomized controlled trial. Osteoporos Int 26, 2449–2459 (2015). https://doi.org/10.1007/s00198-015-3159-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3159-1

Keywords

Navigation