We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Nano-LC in proteomics: recent advances and approaches

    Steven Ray Wilson

    *Author for correspondence:

    E-mail Address: stevenw@kjemi.uio.no

    Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway

    ,
    Tore Vehus

    Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway

    ,
    Henriette Sjaanes Berg

    Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway

    &
    Elsa Lundanes

    Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway

    Published Online:https://doi.org/10.4155/bio.15.92

    In proteomics, nano-LC is arguably the most common tool for separating peptides/proteins prior to MS. The main advantage of nano-LC is enhanced sensitivity, as compounds enter the MS in more concentrated bands. This is particularly relevant for determining low abundant compounds in limited samples. Nano-LC columns can produce peak capacities of 1000 or more, and very narrow columns can be used to perform proteomics of 1000 cells or less. Also, nano-LC can be coupled with online add-ons such as selective trap columns or enzymatic reactors, for faster and more automated analysis. Nano-LC is today an established tool for research laboratories; but can nano-LC-based systems soon be ready for more routine settings, such as in clinics?

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Saito Y, Jinno K, Greibrokk T. Capillary columns in liquid chromatography: Between conventional columns and microchips. J. Sep. Sci. 27(17‐18), 1379–1390 (2004).
    • 2 Rogeberg M, Vehus T, Grutle L, Greibrokk T, Wilson SR, Lundanes E. Separation optimization of long porous‐layer open‐tubular columns for nano‐LC-MS of limited proteomic samples. J. Sep. Sci. 36(17), 2838–2847 (2013).
    • 3 Miyamoto K, Hara T, Kobayashi H et al. High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns. Anal. Chem. 80(22), 8741–8750 (2008).
    • 4 Annesley TM. Ion suppression in mass spectrometry. Clin. Chem. 49(7), 1041–1044 (2003).
    • 5 Takeuchi T, Ishii D. Ultra-micro high-performance liquid chromatography. J. Chromatogr. A 190(1), 150–155 (1980).
    • 6 Hirata Y, Jinno K. High resolution liquid chromatography with a packed micro glass capillary column. J. High Resolut. Chromatogr. 6(4), 196–199 (1983).
    • 7 Karlsson KE, Novotny M. Separation efficiency of slurry-packed liquid chromatography microcolumns with very small inner diameters. Anal. Chem. 60(17), 1662–1665 (1988).
    • 8 Lee ED, Henion JD, Covey TR. Microbore high performance liquid chromatography–ion spray mass spectrometry for the determination of peptides. J. Microcolumn Sep. 1(1), 14–18 (1989).
    • 9 Henderson RA, Cox AL, Sakaguchi K et al. Direct identification of an endogenous peptide recognized by multiple hla-a2. 1-specific cytotoxic t cells. Proc. Natl Acad. Sci. USA 90(21), 10275–10279 (1993).
    • 10 Chervet J, Ursem M, Salzmann J. Instrumental requirements for nanoscale liquid chromatography. Anal. Chem. 68(9), 1507–1512 (1996).• Describes downscaling of nano-LC columns from 75 to 15 μm.
    • 11 Wilm MS, Mann M. Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last? Int. J. Mass Spectrom. Ion Processes 136(2), 167–180 (1994).
    • 12 Ishihama Y. Proteomic LC–MS systems using nanoscale liquid chromatography with tandem mass spectrometry. J. Chromatogr. A 1067(1), 73–83 (2005).
    • 13 Shen Y, Zhang R, Moore RJ et al. Automated 20 kpsi RPLC-MS and MS/MS with chromatographic peak capacities of 1000–1500 and capabilities in proteomics and metabolomics. Anal. Chem. 77(10), 3090–3100 (2005).
    • 14 Pirmoradian M, Budamgunta H, Chingin K, Zhang B, Astorga-Wells J, Zubarev R. Rapid and deep human proteome analysis by single-dimension shotgun proteomics. Mol. Cell. Proteomics 12(11), 3330–3338 (2013).
    • 15 Smejkal GB. Genomics and proteomics: of hares, tortoises and the complexity of tortoises. Expert Rev. Proteomics 9(5), 469–472 (2012).
    • 16 Smith LM, Kelleher NL, Linial M et al. Proteoform: a single term describing protein complexity Nat. Meth. 10(3), 186–187 (2013).
    • 17 Köcher T, Pichler P, De Pra M, Rieux L, Swart R, Mechtler K. Development and performance evaluation of an ultralow flow nanoliquid chromatography‐tandem mass spectrometry set‐up. Proteomics 14(17–18), 1999–2007 (2014).
    • 18 Thakur D, Rejtar T, Wang D et al. Microproteomic analysis of 10,000 laser captured microdissected breast tumor cells using short-range sodium dodecyl sulfate-polyacrylamide gel electrophoresis and porous layer open tubular liquid chromatography tandem mass spectrometry. J. Chromatogr. A 1218(45), 8168–8174 (2011).
    • 19 Hustoft HK, Vehus T, Brandtzaeg OK et al. Open tubular lab-on-column/mass spectrometry for targeted proteomics of nanogram sample amounts. PLoS ONE 9(9), e106881 (2014).
    • 20 Vissers JP, Claessens HA, Cramers CA. Microcolumn liquid chromatography: instrumentation, detection and applications. J. Chromatogr. A 779(1), 1–28 (1997).
    • 21 Vissers JP. Recent developments in microcolumn liquid chromatography. J. Chromatogr. A 856(1), 117–143 (1999).
    • 22 Shen Y, Zhao R, Berger SJ, Anderson GA, Rodriguez N, Smith RD. High-efficiency nanoscale liquid chromatography coupled on-line with mass spectrometry using nanoelectrospray ionization for proteomics. Anal. Chem. 74(16), 4235–4249 (2002).
    • 23 Schmidt A, Karas M, Dülcks T. Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? J. Am. Soc. Mass Spectrom. 14(5), 492–500 (2003).
    • 24 Cech NB, Enke CG. Relating electrospray ionization response to nonpolar character of small peptides. Anal. Chem. 72(13), 2717–2723 (2000).
    • 25 Greibrokk T, Andersen T. High-temperature liquid chromatography. J. Chromatogr. A 1000(1), 743–755 (2003).
    • 26 Fekete S, Oláh E, Fekete J. Fast liquid chromatography: the domination of core–shell and very fine particles. J. Chromatogr. A 1228(1), 57–71 (2012).
    • 27 Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal. Chem. 68(19), 3498–3501 (1996).•• Excellent groundbreaking work on the introduction of silica monoliths.
    • 28 Arrua RD, Talebi M, Causon TJ, Hilder EF. Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules. Anal. Chim. Acta 738(1), 1–12 (2012).•• In-depth review of organic monoliths for separation of proteins and peptides.
    • 29 Xie C, Ye M, Jiang X, Jin W, Zou H. Octadecylated silica monolith capillary column with integrated nanoelectrospray ionization emitter for highly efficient proteome analysis. Mol. Cell. Proteomics 5(3), 454–461 (2006).
    • 30 Yin H, Killeen K. The fundamental aspects and applications of Agilent HPLC‐Chip. J. Sep. Sci. 30(10), 1427–1434 (2007).
    • 31 Kiyonami R, Ravnsborg C, Madsen O, Zabrouskov V. Easy-to-use, plug-and-spray ion source for robust and reproducible ultra high pressure nanoflow LC/MS. Thermo Fisher Scientific, CA, USA, Technical Note 63546 (2012).
    • 32 Delporte C, Noyon C, Raynal P et al. Advancement in stationary phase for peptide separation helps in protein identification: application to atheroma plaque proteomics using nano-chip liquid chromatography and mass spectrometry. J. Chromatogr. A 1385, 116–123 (2015).
    • 33 Rogeberg M, Wilson SR, Greibrokk T, Lundanes E. Separation of intact proteins on porous layer open tubular (plot) columns. J. Chromatogr. A 1217(17), 2782–2786 (2010).
    • 34 Rogeberg M, Wilson SR, Malerod H, Lundanes E, Tanaka N, Greibrokk T. High efficiency, high temperature separations on silica based monolithic columns. J. Chromatogr. A 1218(41), 7281–7288 (2011).
    • 35 Guan YF, Zhou LM, Shang ZH. Dry-packed capillary columns for micro HPLC. J. High Resolut. Chromatogr. 15(7), 434–436 (1992).
    • 36 Leonardis I, Capriotti F, Cappiello A, Famiglini G, Palma P. Temperature effects on nano-LC column packing technology. J. Sep. Sci. 35(13), 1589–1595 (2012).
    • 37 Malik A, Li WB, Lee ML. Preparation of long packed capillary columns using carbon-dioxide slurries. J. Microcolumn Sep. 5(4), 361–369 (1993).
    • 38 Tong DX, Bartle KD, Clifford AA. Preparation and evaluation of supercritical carbon dioxide-packed capillary columns for HPLC and SFC. J. Microcolumn Sep. 6(3), 249–255 (1994).
    • 39 Rodrigues JC, Lancas FM. Preparation of packed capillary columns using supercritical carbon dioxide on cyclone-type slurry reservoir. J. Chromatogr. A 1090(1–2), 172–177 (2005).
    • 40 Bruns S, Franklin EG, Grinias JP, Godinho JM, Jorgenson JW, Tallarek U. Slurry concentration effects on the bed morphology and separation efficiency of capillaries packed with sub-2 µm particles. J. Chromatogr. A 1318, 189–197 (2013).• Describes the importance of slurry concentrations on column efficiency.
    • 41 Kennedy RT, Jorgenson JW. Preparation and evaluation of packed capillary liquid-chromatography columns with inner diameters from 20-µm to 50-µm. Anal. Chem. 61(10), 1128–1135 (1989).
    • 42 Blue LE, Jorgenson JW. 1.1 µm superficially porous particles for liquid chromatography part II: column packing and chromatographic performance. J. Chromatogr. A 1380, 71–80 (2015).
    • 43 Capriotti F, Leonardis I, Cappiello A, Famiglini G, Palma P. A fast and effective method for packing nano-LC columns with solid-core nano particles based on the synergic effect of temperature, slurry composition, sonication and pressure. Chromatographia 76(17–18), 1079–1086 (2013).
    • 44 MacNair JE, Lewis KC, Jorgenson JW. Ultrahigh pressure reversed-phase liquid chromatography in packed capillary columns. Anal. Chem. 69(6), 983–989 (1997).
    • 45 Patel KD, Jerkovich AD, Link JC, Jorgenson JW. In-depth characterization of slurry packed capillary columns with 1.0-µm nonporous particles using reversed-phase isocratic ultrahigh-pressure liquid chromatography. Anal. Chem. 76(19), 5777–5786 (2004).
    • 46 Shelly DC, Antonucci VL, Edkins TJ, Dalton TJ. Insights into the slurry packing and bed structure of capillary liquid-chromatographic columns. J. Chromatogr. A 458, 267–279 (1988).
    • 47 Vissers JPC, Claessens HA, Laven J, Cramers CA. Colloid-chemical aspects of slurry packing techniques in microcolumn liquid-chromatography. Anal. Chem. 67(13), 2103–2109 (1995).
    • 48 Vissers JPC, Hoeben MA, Laven J, Claessens HA, Cramers CA. Hydrodynamic aspects of slurry packing processes in microcolumn liquid chromatography. J. Chromatogr. A 883(1–2), 11–25 (2000).
    • 49 Hsieh EJ, Bereman MS, Durand S, Valaskovic GA, Maccoss MJ. Effects of column and gradient lengths on peak capacity and peptide identification in nanoflow LC-MS/MS of complex proteomic samples. J. Am. Soc. Mass Spectrom. 24(1), 148–153 (2013).• Study investigating correlation between peak capacity and protein identification.
    • 50 Marx H, Lemeer S, Schliep JE et al. A large synthetic peptide and phosphopeptide reference library for mass spectrometry-based proteomics. Nat. Biotechnol. 31(6), 557–564 (2013).
    • 51 Wisniewski JR, Hein MY, Cox J, Mann M. A “proteomic ruler” for protein copy number and concentration estimation without spike-in standards. Mol. Cell. Proteomics 13(12), 3497–3506 (2014).
    • 52 Keilhauer EC, Hein MY, Mann M. Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS). Mol. Cell. Proteomics 14(1), 130–135 (2015).
    • 53 Novakova L, Vaast A, Stassen C et al. High-resolution peptide separations using nano-LC at ultra-high pressure. J. Sep. Sci. 36(7), 1192–1199 (2013).
    • 54 Nouri-Nigjeh E, Sukumaran S, Tu C et al. Highly multiplexed and reproducible ion-current-based strategy for large-scale quantitative proteomics and the application to protein expression dynamics induced by methylprednisolone in 60 rats. Anal. Chem. 86(16), 8149–8157 (2014).
    • 55 Xiao Z, Wang L, Liu Y, Wang Q, Zhang B. A “plug-and-use” approach towards facile fabrication of capillary columns for high performance nanoflow liquid chromatography. J. Chromatogr. A 1325(1), 109–114 (2014).
    • 56 Zhou F, Lu Y, Ficarro SB, Webber JT, Marto JA. Nanoflow low pressure high peak capacity single dimension LC-MS/MS platform for high-throughput, in-depth analysis of mammalian proteomes. Anal. Chem. 84(11), 5133–5139 (2012).
    • 57 Horie K, Sato Y, Kimura T et al. Estimation and optimization of the peak capacity of one-dimensional gradient high performance liquid chromatography using a long monolithic silica capillary column. J. Chromatogr. A 1228(1), 283–291 (2012).
    • 58 Horie K, Kamakura T, Ikegami T et al. Hydrophilic interaction chromatography using a meter-scale monolithic silica capillary column for proteomics LC-MS. Anal. Chem. 86(8), 3817–3824 (2014).
    • 59 Yamana R, Iwasaki M, Wakabayashi M, Nakagawa M, Yamanaka S, Ishihama Y. Rapid and deep profiling of human induced pluripotent stem cell proteome by one-shot nanoLC–MS/MS analysis with meter-scale monolithic silica columns. J. Proteome Res. 12(1), 214–221 (2013).• Recent use of long silica columns for characterization of cell proteomes.
    • 60 Aoki W, Tatsukami Y, Kitahara N et al. Elucidation of potentially virulent factors of candida albicans during serum adaptation by using quantitative time-course proteomic. J. Proteomics 91(1), 417–429 (2014).
    • 61 Malerod H, Rogeberg M, Tanaka N, Greibrokk T, Lundanes E. Large volume injection of aqueous peptide samples on a monolithic silica based zwitterionic-hydrophilic interaction liquid chromatography system for characterization of posttranslational modifications. J. Chromatogr. A 1317(1), 129–137 (2013).
    • 62 Svec F, Fréchet JM. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem. 64(7), 820–822 (1992).
    • 63 Dang X, Scotcher J, Wu S et al. The first pilot project of the consortium for top-down proteomics: A status report. Proteomics 14(10), 1130–1140 (2014).
    • 64 Mohr JH, Swart R, Huber CG. Morphology and efficiency of poly(styrene-co-divinylbenzene)-based monolithic capillary columns for the separation of small and large molecules Anal. Bioanal. Chem. 400(8), 2391–2402 (2011).
    • 65 Premstaller A, Oberacher H, Walcher W et al. High-performance liquid chromatography-electrospray ionization mass spectrometry using monolithic capillary columns for proteomic studies. Anal. Chem. 73(11), 2390–2396 (2001).
    • 66 Eeltink S, Wouters B, Desmet G et al. High-resolution separations of protein isoforms with liquid chromatography time-of-flight mass spectrometry using polymer monolithic capillary columns. J. Chromatogr. A 1218(32), 5504–5511 (2011).
    • 67 Wouters B, Vaast A, Treumann A et al. The potential of polymer monolithic capillary columns for the lc-ms analysis of intact proteins. LC-GC Europe 25(1), 10–19 (2012).
    • 68 Szumski M, Buszewski B. Preparation of monolithic capillary chromatographic columns using supercritical fluid as a porogen solvent. Chromatographia 77(15–16), 1009–1017 (2014).
    • 69 Duan Q, Liu C, Liu Z et al. Preparation and evaluation of a novel monolithic column containing double octadecyl chains for reverse-phase micro high performance liquid chromatography. J. Chromatogr. A 1345(1), 174–181 (2014).
    • 70 Zhang Z, Wang F, Dong J, Lin H, Ou J, Zou H. A “one step” approach for preparation of an octadecyl-silica hybrid monolithic column via a non-hydrolytic sol-gel (nhsg) method. RSC Adv. 3(44), 22160–22167 (2013).
    • 71 Liu Z, Ou J, Liu Z et al. Separation of intact proteins by using polyhedral oligomeric silsesquioxane based hybrid monolithic capillary columns. J. Chromatogr. A 1317(1), 138–147 (2013).
    • 72 Aydogan C, Yilmaz F, Denizli A. Cation exchange/hydrophobic interaction monolithic chromatography of small molecules and proteins by nano liquid chromatography. J. Sep. Sci. 36(11), 1685–1692 (2013).
    • 73 Vaast A, Terryn H, Svec F, Eeltink S. Nanostructured porous polymer monolithic columns for capillary liquid chromatography of peptides. J. Chromatogr. A 1374(1), 171–179 (2014).
    • 74 Dolman S, Eeltink S, Vaast A, Pelzing M. Investigation of carryover of peptides in nano-liquid chromatography/mass spectrometry using packed and monolithic capillary columns. J. Chromatogr. B 912(1), 56–63 (2013).• Important review descibing carryover in various column types.
    • 75 Collins DA, Nesterenko EP, Paull B. Porous layer open tubular columns in capillary liquid chromatography. Analyst 139(6), 1292–1302 (2014).
    • 76 Yue G, Luo Q, Zhang J, Wu S-L, Karger BL. Ultratrace LC/MS proteomic analysis using 10-μm-id porous layer open tubular poly (styrene-divinylbenzene) capillary columns. Anal. Chem. 79(3), 938–946 (2007).•• Reinvention of polymer layer open tubular columns in LC.
    • 77 Knob R, Kulsing C, Boysen RI, Macka M, Hearn MTW. Surface-area expansion with monolithic open tubular columns. Trends Anal. Chem. 67(1), 16–25 (2015).
    • 78 Ishii D, Takeuchi T. Open tubular capillary LC. J. Chromatogr. Sci. 18(9), 462–472 (1980).
    • 79 Olsen PA, Solberg NT, Lund K et al. Implications of targeted genomic disruption of β-catenin in bxpc-3 pancreatic adenocarcinoma cells. PLoS ONE 9(12), e115496 (2014).
    • 80 Li S, Plouffe BD, Below AM et al. An integrated platform for isolation, processingand mass spectrometry-based proteomic profiling of rare cells in whole blood.. Mol. Cell. Proteomics 14(6), 1672–1683 (2015).
    • 81 Hustoft HK, Brandtzaeg OK, Rogeberg M et al. Integrated enzyme reactor and high resolving chromatography in “sub-chip” dimensions for sensitive protein mass spectrometry. Sci. Rep. 3(1), doi: 10.1038/srep03511 (2013).
    • 82 Nguyen HP, Schug KA. The advantages of ESI‐MS detection in conjunction with HILIC mode separations: Fundamentals and applications. J. Sep. Sci. 31(9), 1465–1480 (2008).
    • 83 Hahne H, Pachl F, Ruprecht B et al. DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nat. Meth. 10(10), 989–991 (2013).• Interesting review describing solvent additive as a sensitivity enhancer in electrospray ionization.
    • 84 Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC) – a powerful separation technique. Anal. Bioanal. Chem. 402(1), 231–247 (2012).
    • 85 Chen M-L, Li L-M, Yuan B-F, Ma Q, Feng Y-Q. Preparation and characterization of methacrylate-based monolith for capillary hydrophilic interaction chromatography. J. Chromatogr. A 1230(1), 54–60 (2012).
    • 86 Di Palma S, Boersema PJ, Heck AJ, Mohammed S. Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC and ZIC-cHILIC) provide high resolution separation and increase sensitivity in proteome analysis. Anal. Chem. 83(9), 3440–3447 (2011).
    • 87 Ruta J, Rudaz S, Mccalley DV, Veuthey J-L, Guillarme D. A systematic investigation of the effect of sample diluent on peak shape in hydrophilic interaction liquid chromatography. J. Chromatogr. A 1217(52), 8230–8240 (2010).
    • 88 Heinisch S, Rocca J-L. Sense and nonsense of high-temperature liquid chromatography. J. Chromatogr. A 1216(4), 642–658 (2009).
    • 89 Hyung S-W, Kim M-S, Mun D-G, Lee H, Lee S-W. The effect and potential of using a temperature controlled separation column with ultra-high pressure microcapillary liquid chromatography/tandem mass spectrometry on proteomic analysis. Analyst 136(10), 2100–2105 (2011).
    • 90 Eghbali H, Sandra K, Tienpont B, Eeltink S, Sandra P, Desmet G. Exploring the possibilities of cryogenic cooling in liquid chromatography for biological applications: a proof of principle. Anal. Chem. 84(4), 2031–2037 (2012).
    • 91 Groskreutz SR, Weber SG. Temperature-assisted on-column solute focusing: A general method to reduce pre-column dispersion in capillary high performance liquid chromatography. J. Chromatogr. A 1354(1), 65–74 (2014).
    • 92 Causon TJ, Cortes HJ, Shellie RA, Hilder EF. Temperature pulsing for controlling chromatographic resolution in capillary liquid chromatography. Anal. Chem. 84(7), 3362–3368 (2012).
    • 93 Rogeberg M, Malerod H, Roberg-Larsen H, Aass C, Wilson SR. On-line solid phase extraction–liquid chromatography, with emphasis on modern bioanalysis and miniaturized systems. J. Pharm. Biomed. Anal. 87(1), 120–129 (2014).
    • 94 Roberg-Larsen H, Vesterdal C, Wilson SR, Lundanes E. Underivatized oxysterols and nanoLC–ESI-MS: a mismatch. Steroids 99, 125–130 (2015).
    • 95 Kirsch S, Bindila L. Nano-LC and HPLC-chip-ESI-MS: an emerging technique for glycobioanalysis. Bioanalysis 1(7), 1307–1327 (2009).
    • 96 Liu F, Ye M, Pan Y et al. Integration of cell lysis, protein extraction, and digestion into one step for ultrafast sample preparation for phosphoproteome analysis. Anal. Chem. 86(14), 6786–6791 (2014).
    • 97 Kuhn E, Whiteaker JR, Mani DR et al. Interlaboratory evaluation of automated, multiplexed peptide immunoaffinity enrichment coupled to multiple reaction monitoring mass spectrometry for quantifying proteins in plasma. Mol. Cell. Proteomics 11(6), M111.013854 (2012).
    • 98 Neubert H, Gale J, Muirhead D. Online high-flow peptide immunoaffinity enrichment and nanoflow LC–MS/MS: assay development for total salivary pepsin/pepsinogen. Clin. Chem. 56(9), 1413–1423 (2010).
    • 99 Li H, Liu Z. Recent advances in monolithic column-based boronate-affinity chromatography. Trends Anal. Chem. 37(1), 148–161 (2012).
    • 100 Pepaj M, Wilson SR, Novotna K, Lundanes E, Greibrokk T. Two-dimensional capillary liquid chromatography: pH gradient ion exchange and reversed phase chromatography for rapid separation of proteins. J. Chromatogr. A 1120(1), 132–141 (2006).
    • 101 Gilar M, Olivova P, Daly AE, Gebler JC. Orthogonality of separation in two-dimensional liquid chromatography. Anal. Chem. 77(19), 6426–6434 (2005).• Fundamental study on orthogonal separation techniques in LC.
    • 102 Taylor P, Nielsen PA, Trelle MB et al. Automated 2D peptide separation on a 1D nano-LC–MS system. J. Proteome Res. 8(3), 1610–1616 (2009).
    • 103 Marino F, Cristobal A, Binai NA, Bache N, Heck AJ, Mohammed S. Characterization and usage of the easy-spray technology as part of an online 2D SCX-RP ultra-high pressure system. Analyst 139(24), 6520–6528 (2014).
    • 104 Almstetter MF, Oefner PJ, Dettmer K. Comprehensive two-dimensional gas chromatography in metabolomics. Anal. Bioanal. Chem. 402(6), 1993–2013 (2012).
    • 105 Wilson SR, Jankowski M, Pepaj M et al. 2D LC separation and determination of bradykinin in rat muscle tissue dialysate with online SPE-HILIC-SPE-RP-MS. Chromatographia 66(7–8), 469–474 (2007).
    • 106 Malerod H, Lundanes E, Greibrokk T. Recent advances in on-line multidimensional liquid chromatography. Anal. Meth. 2(2), 110–122 (2010).
    • 107 Nägele E, Vollmer M, Hörth P. Improved 2D nano-LC/MS for proteomics applications: a comparative analysis using yeast proteome. J. Biomol. Tech. 15(2), 134 (2004).
    • 108 Ding C, Jiang J, Wei J et al. A fast workflow for identification and quantification of proteomes. Mol. Cell. Proteomics 12(8), 2370–2380 (2013).
    • 109 Boichenko AP, Govorukhina N, Zee AG, Bischoff R. Multidimensional separation of tryptic peptides from human serum proteins using reversed‐phase, strong cation exchange, weak anion exchange, and fused‐core fluorinated stationary phases. J. Sep. Sci. 36(21–22), 3463–3470 (2013).
    • 110 Sommella E, Cacciola F, Donato P, Dugo P, Campiglia P, Mondello L. Development of an online capillary comprehensive 2D‐LC system for the analysis of proteome samples. J. Sep. Sci. 35(4), 530–533 (2012).
    • 111 Safdar M, Sproß J, Jänis J. Microscale immobilized enzyme reactors in proteomics: latest developments. J. Chromatogr. A 1324, 1–10 (2014).
    • 112 Yuan H, Zhang L, Zhang Y. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid–silica hybrid monolith as matrix for on-line protein digestion. J. Chromatogr. A 1371, 48–57 (2014).
    • 113 Wang F, Wei X, Zhou H, Liu J, Figeys D, Zou H. Combination of online enzyme digestion with stable isotope labeling for high‐throughput quantitative proteome analysis. Proteomics 12(21), 3129–3137 (2012).
    • 114 Abbatiello SE, Mani DR, Burgess M et al. Large-scale inter-laboratory study to develop, analytically validate and apply highly multiplexed, quantitative peptide assays to measure cancer-relevant proteins in plasma. Mol. Cell. Proteomics doi:10.1074/mcp.M1114.047050 (2015).•• Highly relevant review for introducing nano-LC into clinics, demonstrating that highly reproducible results can be achieved.
    • 115 Callewaert M, Op De Beeck J, Maeno K et al. Integration of uniform porous shell layers in very long pillar array columns using electrochemical anodization for liquid chromatography. Analyst 139(3), 618–625 (2014).
    • 116 Cohen SA, Schure MR. Multidimensional Liquid Chromatography: Theory and Applications in Industrial Chemistry and the Life Sciences. John Wiley & Sons, Inc., NJ, USA, (2008).
    • 117 Albrecht E, Schering L, Maak S et al. Irisin – a myth rather than an exercise-inducible myokine. Sci. Rep. 5, 8889 (2015).
    • 118 Rauh M. LC-MS/MS for protein and peptide quantification in clinical chemistry. J. Chromatogr. B 883–884, 59–67 (2012).