Skip to main content
Log in

Noble Metal/CNT Based Catalysts in NH3 and EtOH Assisted SCR of NO

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Platinum (Pt), palladium (Pd/PdO), and rhodium (Rh) decorated carbon nanotube (CNT) based catalysts were prepared, characterized and their activity was tested in ammonia (NH3) and ethanol (EtOH) assisted selective catalytic reduction (SCR) of nitric oxide (NO) at low temperatures (30–300 °C). In addition, the influence of sulphur on NH3-SCR activity was investigated. The catalysts were characterized by transmission and scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction techniques. In addition, IR measurements were done to determine the adsorbed species on the catalyst surface. The maximum NO conversions over the catalysts were as high as 85 % for Pt/CNT (at 192 °C), 54 % for Pd/PdO/CNT (at 291 °C), and 48 % for Rh/CNT (at 292 °C) with NH3 as the reducing agent. The SO2 deactivation was the most severe in the case of Pd/PdO/CNTs. In the EtOH assisted SCR the maximum NO conversions were 100 % for Pt/CNT, 98 % for Pd/PdO/CNT and 85 % for Rh/CNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao Y, Wang S, Duan L, Lei Y, Cao P, Hao J (2008) Atmos Environ 42:8442–8452

    Article  CAS  Google Scholar 

  2. European Parliament and Council (2007) Regulation (EC) 715/2007. PDF-document. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:171:0001:0016:EN:PDF. Accessed 12 June 2014

  3. Bosch H, Janssen F (1988) Catal Today 2:369–532

    Article  CAS  Google Scholar 

  4. Roy S, Hedge MS, Madras G (2009) Appl Energy 86:2283–2297

    Article  CAS  Google Scholar 

  5. Sloss L (1991) NOx emissions from coal combustion. IEA Coal Research, London

    Google Scholar 

  6. Burch R, Breen JP, Meunier FC (2002) Appl Catal B 39:283–303

    Article  CAS  Google Scholar 

  7. European Parliament and Council (2009) Directive 2009/28/EC. [Online]. PDF-document. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:EN:PDF. Accessed 6 April 2010

  8. Bai S-L, Zhao J-H, Wang L, Zhu Z-P (2009) J Fuel Chem Technol 37:583–587

    Article  CAS  Google Scholar 

  9. Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B 18:1–36

    Article  CAS  Google Scholar 

  10. Lagerkvist BJ, Oskarsson A (2007) In: Nordberg G, Fowler BA, Nordberg M, Friberg LT (eds) Handbook on the toxicology of metals, 3rd edn. Academic Press, New York, pp. 905–923

  11. Moura de Oliveira ML, Monteiro Silva C, Moreno-Tost R, Lopes Farias T, Jiménez-López A, Rodríguez-Castellón E (2009) Appl Catal B 88:420–429

    Article  CAS  Google Scholar 

  12. Huang B, Huang R, Jin D, Ye D (2007) Catal Today 126:279–283

    Article  CAS  Google Scholar 

  13. Su Y, Fan B, Wang L, Liu Y, Huang B, Fu M, Chen L, Ye D (2013) Catal Today 201:115–121

    Article  CAS  Google Scholar 

  14. Tang X, Hao J, Yi H, Li J (2007) Catal Today 126:406–411

    Article  CAS  Google Scholar 

  15. Heck RM (1999) Catal Today 53:519–523

    Article  CAS  Google Scholar 

  16. Ouyang R, Liu J-X, Li W-X (2013) J Am Chem Soc 135:1760–1771

    Article  CAS  Google Scholar 

  17. Rodríguez-Reinoso F (1998) Carbon 36:159–175

    Article  Google Scholar 

  18. Serp P, Corrias M, Kalck P (2003) Appl Catal A 253:337–358

    Article  CAS  Google Scholar 

  19. Endo M, Strano MS, Ajayan PM (2008) In: Jorio A, Dresselhaus MS, Dresselhaus G (eds) Topics in applied physics 111: carbon nanotubes. Springer-Verlag, Berlin, pp 13–62

  20. Halonen N, Kordás K, Tóth G, Mustonen T, Mäklin J, Vähäkangas J, Ajayan PM, Vajtai R (2008) J Phys Chem C 112:6723–6728

    Article  CAS  Google Scholar 

  21. Kordás K, Tóth G, Moilanen P, Kumpumäki M, Vähäkangas J, Uusimäki A, Vajtai R, Ajayan PM (2007) Appl Phys Lett 90:123105

    Article  Google Scholar 

  22. Sápi A, Rémiás R, Kónya Z, Kukovecz A, Kordás K, Kiricsi I (2009) React Kinet Catal Lett 96:379–389

    Article  Google Scholar 

  23. Tessonnier J-P, Pesant L, Pham-Huu C, Ehret G, Ledoux MJ (2000) Stud Surf Sci Catal 143:697–704

    Article  Google Scholar 

  24. Pham-Huu C, Keller N, Ehret G, Charbonniere LJ, Ziessel R, Ledoux MJ (2001) J Mol Catal A Chem 170:155–163

    Article  CAS  Google Scholar 

  25. Solhy A, Machado BF, Beausoleil J, Kihn Y, Gonçalves F, Pereira MFR, Órfão JJM, Figueiredo JL, Faria JL, Serp P (2008) Carbon 46:1194–1207

    Article  CAS  Google Scholar 

  26. Ersson A (2003) Materials for high-temperature catalytic combustion. Doctoral dissertation. KTH-Kunglika tekniska högskolan, Stockholm

  27. Meeyoo V, Trimm DL, Cant NW (1998) Appl Catal B 16:L101–L104

    Article  CAS  Google Scholar 

  28. Bai S, Zhao J, Wang L, Zhu Z (2010) Catal Today 158:393–400

    Article  CAS  Google Scholar 

  29. Zhu Z, Liu Z, Niu H, Liu S (1999) J Catal 187:245–248

    Article  CAS  Google Scholar 

  30. Marbán G, Antuña R, Fuertes AB (2003) Appl Catal B 41:323–338

    Article  Google Scholar 

  31. Marbán G, Valdés-Solís T, Fuertes AB (2004) J Catal 226:138–155

    Article  Google Scholar 

  32. Muñiz J, Marbán G, Fuertes AB (2000) Appl Catal B 27:27–36

    Article  Google Scholar 

  33. Valdés-Solís T, Marbán G, Fuertes AB (2001) Catal Today 69:259–264

    Article  Google Scholar 

  34. Valdés-Solís T, Marbán G, Fuertes AB (2003) Appl Catal B 46:261–271

    Article  Google Scholar 

  35. Yoshikawa M, Yasutake A, Mochida I (1998) Appl Catal A 173:239–245

    Article  CAS  Google Scholar 

  36. Zhu Z, Liu Z, Liu S, Niu H (1999) Appl Catal B 23:L229–L233

    Article  CAS  Google Scholar 

  37. Pourkhalil M, Moghaddam AZ, Rashidi A, Towfighi J, Mortazavi Y (2013) Appl Surf Sci 279:250–259

    Article  CAS  Google Scholar 

  38. Li Q, Hou X, Yang H, Ma Z, Zheng J, Liu F, Zhang X, Yuan Z (2012) J Mol Catal A Chem 356:121–127

    Article  CAS  Google Scholar 

  39. Halonen N, Rautio A, Leino A-R, Kyllönen T, Tóth G, Lappalainen J, Kordás K, Huuhtanen M, Keiski RL, Sápi A, Szabó M, Kukovecz A, Kónya Z, Kiricsi I, Ajayan PM, Vajtai R (2010) ACS Nano 4:2003–2008

    Article  CAS  Google Scholar 

  40. Leino A-R, Mohl M, Kukkola J, Mäki-Arvela P, Kokkonen T, Shchukarev A, Kordas K (2013) Carbon 57:99–107

    Article  CAS  Google Scholar 

  41. Sapi A (2012) Doctoral thesis, University of Szeged

  42. Holzwarth U, Gibson N (2011) Nat Nanotech 6:534

    Article  CAS  Google Scholar 

  43. Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Grübel G, Weller H (2005) Langmuir 21:1931–1936

    Article  CAS  Google Scholar 

  44. Pyrz WD, Buttrey DJ (2008) Langmuir 24:11350–11360

    Article  CAS  Google Scholar 

  45. Onoe T, Iwamoto S, Inoue M (2007) Catal Commun 8:701–706

    Article  CAS  Google Scholar 

  46. Seelam PK, Huuhtanen M, Sápi A, Szabó M, Kordás K, Turpeinen E, Tóth G, Keiski RL (2010) Int J Hydrog Energy 35:12588–12595

    Article  CAS  Google Scholar 

  47. Yu R, Chen L, Liu Q, Lin J, Tan K-L, Ng SC, Chan HSO, Xu G-Q, Hor TSA (1998) Chem Mater 10:718–722

    Article  CAS  Google Scholar 

  48. Yang C, Hu X, Wang D, Dai C, Zhang L, Jin H, Agathopoulos S (2006) J Power Sources 160:187–193

    Article  CAS  Google Scholar 

  49. Chen S, Shen W, Wu G, Chen D, Jiang M (2005) Chem Phys Lett 402:312–317

    Article  CAS  Google Scholar 

  50. Karatepe N, Orbak I, Yavuz R, Özyuğuran A (2008) Fuel 87:3207–3215

    Article  CAS  Google Scholar 

  51. Hase T (1997) Tables for organic spectrometry, 4th edn. Otatieto Oy, Helsinki, p 78

    Google Scholar 

  52. Ma Z, Yang H, Liu F, Zhang X (2013) Appl Catal A 467:450–455

    Article  CAS  Google Scholar 

  53. Jiang L, Wang Y, Liu X, Cao Y, Wei K (2013) Chin J Catal 34:2271–2276

    Article  CAS  Google Scholar 

  54. Abdulhamid H, Fridell E, Dawody J, Skoglundh M (2006) J Catal 241:200–210

    Article  CAS  Google Scholar 

  55. Mäklin J, Mustonen T, Kordás K, Saukko S, Tóth G, Vähäkangas J (2007) Phys Stat Sol B 244:4298–4302

    Article  Google Scholar 

  56. Ahmed SN, Baldwin R, Derbyshire F, McEnaney B, Stencel J (1993) Fuel 72:287–292

    Article  CAS  Google Scholar 

  57. Huang C-C, Li H-S, Chen C-H (2008) J Hazard Mater 159:523–527

    Article  CAS  Google Scholar 

  58. Ma Z, Yang H, Li Q, Zheng J, Zhang X (2012) Appl Catal A 427–428:43–48

    Article  Google Scholar 

  59. Zhu Z, Liu Z, Liu S, Niu H (2001) Appl Catal B 30:267–276

    Article  CAS  Google Scholar 

  60. Roy S, Viswanath B, Hedge MS, Madras G (2008) J Phys Chem C 112:6002–6012

    Article  CAS  Google Scholar 

  61. Liu F, He H, Zhang C, Feng Z, Zheng L, Xie Y, Hu T (2010) Appl Catal B 96:408–420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been carried out with the financial support from Fortum Foundation, the Academy of Finland (Project Number 128783), and Graduate School in Chemical Engineering (GSCE). The authors would also like to thank D.Sc.(Tech.) Tao Hu for running the XRD analyses, M.Sc. Elina Pulkkinen for preparing the KBr pellets and helping with the IR measurement, and M.Sc.(Eng.), M.Sc.(Health Sci.) Mari Pietikäinen for help with the EtOH-SCR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Valtanen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valtanen, A., Huuhtanen, M., Rautio, AR. et al. Noble Metal/CNT Based Catalysts in NH3 and EtOH Assisted SCR of NO. Top Catal 58, 984–992 (2015). https://doi.org/10.1007/s11244-015-0467-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0467-9

Keywords

Navigation