We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pluripotency transcription factors in the pathogenesis of colorectal cancer and implications for prognosis

    Ioannis A Voutsadakis

    Division of Medical Oncology, Department of Internal Medicine, Sault Area Hospital, 750 Great Northern Road, Sault Ste Marie, Ontario P6B 0A8, Canada & Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada

    E-mail Address: ivoutsadakis@yahoo.com

    Published Online:https://doi.org/10.2217/bmm.15.4

    The cancer stem cell hypothesis argues that cancers depend on a specific type of cells, representing usually a small percentage of the total cancer cell population, termed cancer stem cells (or tumor-initiating cells) for their development and propagation. In colorectal cancer these cells express specific surface proteins such as CD133 and CD44 and can recapitulate the whole tumor. Besides expression of these surface markers, stem cells are associated with a network of pluripotency transcription factors, such as Oct4 and Sox2, which is present in them. Pluripotency factors are normally active in early development and characterize primitive cells, able to give rise to all different cell and tissue types of the three embryonic layers. In this review I will discuss the relationship of these factors with pathogenic lesions in colorectal cancer and their prognostic implications.

    Papers of special note have been highlighted as: • of interest

    References

    • 1 Castellanos A, Vicente-Dueñas C, Campos-Sánchez E et al. Cancer as a reprogramming-like disease: implications in tumor development and treatment. Semin. Cancer Biol. 20(2), 93–97 (2010).
    • 2 Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100(7), 3983–3988 (2003).
    • 3 O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123), 106–110 (2007).• A landmark paper describing colorectal cancer stem cells.
    • 4 Yoo MH, Hatfield DL. The cancer stem cell theory: is it correct? Mol. Cells 26(5), 514–516 (2008).
    • 5 Malanchi I, Peinado H, Kassen D et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signaling. Nature 452(7187), 650–653 (2008).
    • 6 Krivtsov AV, Twomey D, Feng Z et al. Transformation from commited progenitor to leukemia stem cell initiated by MLL-AF9. Nature 442(7104), 818–822 (2006).
    • 7 Kheirelseid EAH, Miller N, Chang KH et al. Mismatch repair protein expression in colorectal cancer. J. Gastrointest. Oncol. 4(4), 397–408 (2013).
    • 8 Fanali C, Lucchetti D, Farina M et al. Cancer stem cells in colorectal cancer from pathogenesis to therapy: controversies and perspectives. World J. Gastroenterol. 20(4), 923–942 (2014).
    • 9 Ren F, Sheng WQ, Du X. CD133: a cancer stem cells marker, is used in colorectal cancers. World J. Gastroenterol. 19(17), 2603–2611 (2013).
    • 10 Nagano O, Saya H. Mechanism and biological significance of CD44 cleavage. Cancer Sci. 95(12), 930–935 (2004).
    • 11 van der Gun BTF, Melchers LJ, Ruiters MHJ, de Leij LFMH, McLaughlin PMJ, Rots MG. EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis 31(11), 1913–1921 (2010).
    • 12 Schuijers J, Clevers H. Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. EMBO J. 31(12), 2685–2696 (2012).
    • 13 Chen JZ, Wang S, Tang R et al. Cloning and identification of a cDNA that encodes a novel human protein with thrombospondin type I repeat domain, hPWTSR. Mol. Biol. Rep. 29(3), 287–292 (2002).
    • 14 Muraro MG, Mele V, Daster S et al. CD133+, CD166+CD44+, and CD24+CD44+ phenotypes fail to reliably identify cell populations with cancer stem cell functional features in established human colorectal cancer cell lines. Stem Cells Transl. Med. 1(8), 592–603 (2012).
    • 15 Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5), 861–872 (2007).• One of the first papers to describe reprogramming to pluripotency by exogenous factors.
    • 16 Anokye-Danso F, Trivedi CM, Juhr D et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4), 376–388 (2011).• Confirms the essential role of microRNAs in reprogramming.
    • 17 Stefanovic S, Pucéat M. L'octamanie continue. Le double jeu de OCT4. Med. Sci. 26(4), 411–416 (2010).
    • 18 Kehler J, Tolkunova E, Koschorz B, Pesce M, Gentile L, Boiani M. Oct4 is required for primordial germ cell survival. EMBO Rep. 5(11), 1078–1083 (2004).
    • 19 Stefanovic S, Abboud N, Désilets S, Nury D, Cowan C, Pucéat M. Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate. J. Cell Biol. 186(5), 665–673 (2009).
    • 20 Deb-Rinker P, Ly D, Jezierski A, Sikorska M, Walker PR. Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J. Biol. Chem. 280(8), 6257–6260 (2005).
    • 21 Sarkar A, Hochedlinger K. The Sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12(1), 15–30 (2013).
    • 22 Liu KC, Lin BS, Zhao M et al. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell Signal. 25(5), 1264–1271 (2013).
    • 23 Wang ML, Chiou SH, Wu CW. Targeting cancer stem cells: emerging role of Nanog transcription factor. OncoTargets Ther. 6(S38114), 1207–1220 (2013).
    • 24 Navarro P, Avner P. When X-inactivation meets pluripotency: an intimate rendezvous. FEBS Lett. 583(11), 1721–1727 (2009).
    • 25 Shi G, Jin Y. Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res. Ther. 1(39), 1–9 (2010).
    • 26 Chambers I, Tomlinson SR. The transcriptional foundation of pluripotency. Development 136(14), 2311–2322 (2009).
    • 27 Yu HB, Kunarso G, Hong FH, Stanton LW. Zfp206, Oct4, and Sox2 are integrated components of a transcriptional regulatory network in embryonic stem cells. J. Biol. Chem. 284(45), 31327–31335 (2009).
    • 28 Dang CV. MYC on the path to cancer. Cell 149(1), 22–35 (2012).
    • 29 Knoepfler PS. Why Myc? An unexpected ingredient in the stem cell cocktail. Cell Stem Cell 2(1), 18–21 (2008).
    • 30 Wei D, Kanai M, Huang S, Xie K. Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 27(1), 23–31 (2006).
    • 31 Ghaleb AM, Yang VW. The pathobiology of Krüppel-like factors in colorectal cancer. Curr. Colorectal Cancer Rep. 4(2), 59–64 (2008).
    • 32 Hu R, Zuo Y, Zuo L et al. KLF4 expression correlates with the degree of differentiation in colorectal cancer. Gut Liver 5(2), 154–159 (2011).
    • 33 Yu T, Chen X, Zhang W et al. Krüppel-like Factor 4 regulates intestinal epithelial morphology and polarity. PLoS ONE 7(2), e32492 (2012).
    • 34 Leng Z, Tao K, Xia Q et al. Krüppel-like Factor 4 acts as an oncogene in colon cancer stem cell-enriched spheroid cells. PLoS ONE 8(2), e56082 (2013).
    • 35 Flandez M, Guilmeau S, Blache P, Augenlicht LH. KLF4 regulation in intestinal epithelial cell maturation. Exp. Cell Res. 314(20), 3712–3723 (2008).
    • 36 Thornton JE, Gregory RI. How does Lin28 let-7 control development and disease? Trends Cell Biol. 22(9), 474–482 (2012).
    • 37 Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858), 1917–1920 (2007).
    • 38 Johnson SM, Grosshans H, Shingara J et al. RAS is regulated by the let-7 microRNA family. Cell 120(5), 635–647 (2005).
    • 39 Svoboda P, Flemr M. The role of miRNAs and endogenous siRNAs in maternal-to-zygotic reprogramming and the establishment of pluripotency. EMBO Rep. 11(8), 590–597 (2010).
    • 40 Tokarz P, Blasiak J. The role of micro RNA in metastatic colorectal cancer and its significance in cancer prognosis and treatment. Acta Biochim. Pol. 59(4), 467–474 (2012).• Reviews the role of microRNAs in pluripotency, specifically in colorectal cancer.
    • 41 Yan H, Xue G, Mei Q et al. Repression of the miR-17–92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J. 28(18), 2719–2732 (2009).
    • 42 Petrocca F, Vecchione A, Croce CM. Emerging role of miR-106b-25/miR-17–92 clusters in the control of transforming growth factor β signalling. Cancer Res. 68(20), 8191–8194 (2008).
    • 43 Dews M, Fox JL, Hultine S et al. The Myc-miR-17–92 axis blunts TGFβ signalling and production of multiple TGFβ-dependent antiangiogenic factors. Cancer Res. 70(20), 8233–8246 (2010).
    • 44 Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 61(5), 759–767 (1990).• A paper proposing a framework of molecular lesions in colorectal cancer.
    • 45 Voutsadakis IA. Pathogenesis of colorectal carcinoma and therapeutic implications: the roles of the ubiquitin-proteasome system and Cox-2. J. Cell. Mol. Med. 11(2), 252–285 (2007).
    • 46 Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin. Cancer Res. 16(12), 3153–3162 (2010).
    • 47 He TC, Sparks AB, Rago C et al. Identification of c-MYC as a target of the APC pathway. Science 281(5382), 1509–1512 (1998).
    • 48 Li J, Li J, Chen B. Oct4 was a novel target of Wnt signalling pathway. Mol. Cell Biochem. 362(1–2), 233–240 (2012).Paper describing a connection of the Wnt pathway and Oct4 with implications for the association of colorectal carcinogenesis with pluripotency.
    • 49 Lee SH, Koo BS, Kim JM et al. Wnt/β-catenin signalling maintains self-renewal and tumourigenicity of head and neck squamous cell carcinoma stem-like cells by activating Oct4. J. Pathol. 234(1), 99–107 (2014).
    • 50 Ramachandran I, Ganapathy V, Gillies E et al. Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence. Cell Death Dis. 5(e1246), 1–12 (2014).
    • 51 Ji J, Wei X, Wang Y. Embryonic stem cell markers Sox-2 and OCT4 expression and their correlation with WNT signal pathway in cervical squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 7(5), 2470–2476 (2014).
    • 52 Ombrato L, Lluis F, Cosma MP. Regulation of self-renewal and reprogramming by TCF factors. Cell Cycle 11(1), 39–47 (2012).
    • 53 Sokol SY. Maintaining embryonic stem cell pluripotency with Wnt signalling. Development 138(20), 4341–4350 (2011).
    • 54 Hikasa H, Sokol SY. Phosphorylation of TCF proteins by homeodomain-interacting protein kinase 2. J. Biol. Chem. 286(14), 12093–12100 (2011).
    • 55 Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 22(6), 746–755 (2008).
    • 56 Rennoll SA, Konsavage WM Jr, Yochum GS. Nuclear AXIN2 represses MYC gene expression. Biochem. Biophys. Res. Commun. 443(1), 217–222 (2014).
    • 57 Yook JI, Li XY, Ota I et al. A Wnt-Axin2-GSK3β cascade regulates Snail1 activity in breast cancer cells. Nat. Cell Biol. 8(12), 1398–1406 (2006).
    • 58 Han X, Fang X, Lou X et al. Silencing SOX2 induced mesenchymal–epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients. PLoS ONE 7(8), e41335 (2012).
    • 59 Larue L, Bellacosa A. Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24(50), 7443–7454 (2005).
    • 60 Schülein C, Eilers M, Popov N. PI3K-dependent phosphorylation of Fbw7 modulates substrate degradation and activity. FEBS Lett. 585(14), 2151–2157 (2011).
    • 61 Pon YL, Zhou HY, Cheung ANY, Ngan HY, Wong AS. p70 S6 kinase promotes epithelial to mesenchymal transition through Snail induction in ovarian cancer cells. Cancer Res. 68(16), 6524–6532 (2008).
    • 62 Ferraris L, Stewart AP, Kang J et al. Combinatorial binding of transcription factors in the pluripotency control regions of the genome. Genome Res. 21(7), 1055–1064 (2011).
    • 63 Gan B, Lim C, Chu G et al. FoxOs enforce a progression checkpoint to constrain m TORC1-activated renal tumorigenesis. Cancer Cell 18(5), 472–484 (2010).
    • 64 Lin Y, Yang Y, Li W et al. Reciprocal regulation of Akt and Oct4 promotes the self-renewal and survival of embryonal carcinoma cells. Mol. Cell 48(4), 627–640 (2012).
    • 65 Adorno M, Cordenonsi M, Montagner M et al. A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137(1), 87–98 (2009).
    • 66 Kim M, Choe S. BMPs and their clinical potentials. BMB Rep. 44(10), 619–634 (2011).
    • 67 Bertrand FE, Angus CW, Partis WJ, Sigounas G. Developmental pathways in colon cancer. Crosstalk between WNT, BMP, Hedgehog and Notch. Cell Cycle 11(23), 1–8 (2012).
    • 68 Freeman TJ, Smith JJ, Chen X et al. Smad4-mediated signalling inhibits intestinal neoplasia by inhibiting expression of β-catenin. Gastroenterology 142(3), 562–571 (2012).
    • 69 Lee MK, Pardoux C, Hall MC et al. TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 26(17), 3957–3967 (2007).
    • 70 Voorneveld PW, Kodach LL, Jacobs RJ et al. Loss of SMAD4 alters BMP signalling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology 147(1), 196–208 (2014).
    • 71 Scheel C, Weinberg RA. Cancer stem cells and epithelial–mesenchymal transition: concepts and molecular links. Semin. Cancer Biol. 22(5–6), 396–403 (2012).
    • 72 Menendez S, Camus S, Izpisua Belmonte JC. p53 guardian of reprogramming. Cell Cycle 9(19), 3887–3891 (2010).
    • 73 Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell 137(3), 413–431 (2009).
    • 74 Olsson A, Manzl C, Strasser A, Villunger A. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ. 14(9), 1561–1575 (2007).
    • 75 Kawamura T, Suzuki J, Wang YV et al. Linking the p53 tumor suppressor pathway to somatic cell reprogramming. Nature 460(7259), 1140–1144 (2009).
    • 76 Marión RM, Strati K, Li H et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460(7259), 1149–1153 (2009).• Studies show p53 inhibits pluripotency as part of tumor-suppressing properties.
    • 77 Hermeking H. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat. Rev. Cancer 12(9), 613–626 (2012).
    • 78 Tutlewska K, Lubinski J, Kurzawski G. Germline deletions in the EPCAM gene as a cause of Lynch syndrome – literature review. Hereditary Cancer Clin. Pract. 11(9), 1–9 (2013).
    • 79 Kodach LL, Wiercinska E, De Miranda NFCC et al. The bone morphogenetic protein pathway is inactivated in the majority of sporadic colorectal cancers. Gastroenteroloy 134(5), 1332–1341 (2008).
    • 80 Padín-Iruegas M-E, Herranz-Carnero M, Aguin-Losada S et al. Prognostic value of changes in the expression of stem cell markers in the peripheral blood of patients with colon cancer. Oncol. Rep. 29(6), 2467–2472 (2013).
    • 81 Neumann J, Bahr F, Horst D et al. SOX2 expression correlates with lymph-node metastases and distant spread in right-sided colon cancer. BMC Cancer 11(518), 1–7 (2011).
    • 82 Saigusa S, Tanaka K, Toiyama Y et al. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemorediotherapy. Ann. Surg. Oncol. 16(12), 3488–3498 (2009).
    • 83 Xu F, Dai C, Zhang R, Zhao Y, Peng S, Jia C. Nanog: a potential biomarker for liver metastasis of colorectal cancer. Dig. Dis. Sci. 57(9), 2340–2346 (2012).
    • 84 Toon CW, Chou A, Clarkson A et al. Immunohistochemistry for Myc predicts survival in colorectal cancer. PLoS ONE 9(2), e87456 (2014).
    • 85 Smith DR, Goh HS. Overexpression of the c-myc proto-oncogene in colorectal carcinoma is associated with a reduced mortality that is abrogated by point mutation of the p53 tumor suppressor gene. Clin. Cancer Res. 2(6), 1049–1053 (1996).
    • 86 Takatsuno Y, Mimori K, Yamamoto K et al. The rs6983267 SNP is associated with MYC transcription efficiency, which promotes progression and worsens prognosis of colorectal. Ann. Surg. Oncol. 20(4), 1395–1402 (2013).
    • 87 Daraei A, Salehi R, Salehi M et al. Effect of rs6983267 polymorphism in the 8q24 region and rs4444903 polymorphism in EGF gene on the risk of sporadic colorectal cancer in Iranian population. Med. Oncol. 12(2), 1044–1049 (2011).
    • 88 King CE, Cuatrecasas M, Castells A, Sepulveda AR, Lee JS, Rustgi AK. LIN28B promotes colon cancer progression and metastasis. Cancer Res. 71(12), 4260–4268 (2011).• Together with references 80 to 85 describes association of pluripotency core factors with prognosis of colorectal cancer.
    • 89 Patel NV, Ghaleb AM, Nandan MO, Yang VW. Expression of the tumor suppressor Krüppel-like Factor 4 as a prognostic predictor for colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 19(10), 2631–2638 (2010).
    • 90 Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24(4), 372–376 (2000).
    • 91 Webber EM, Lin JS, Whitlock EP. Oncotype Dx tumor gene expression profiling in stage II colon cancer. PLoS Curr. 2(2), RRN1177 (2010).
    • 92 Martin-Belmonte F, Perez-Moreno M. Epithelial cell polarity, stem cells and cancer. Nat. Rev. Cancer 12(1), 23–36 (2012).
    • 93 Voutsadakis IA. The ubiquitin–proteasome system and signal transduction pathways regulating epithelial mesenchymal transition of cancer. J. Biomed. Sci. 19(67), 1–13 (2012).
    • 94 Burguignon LYW, Wong G, Earle C, Chen L. Hyaluronan–CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J. Biol. Chem. 287(39), 32800–32824 (2010).
    • 95 Jachin S, Bae JS, Sung JJ et al. The role of nuclear EpICD in extrahepatic cholangiocarcinoma: association with β-catenin. Int. J. Oncol. 45(2), 691–698 (2014).
    • 96 Huang HP, Chen PH, Yu CY et al. Epithelial cell adhesion molecule (EpCAM) complex proteins promote transcription factor-mediated pluripotency reprogramming. J. Biol. Chem. 286(38), 33520–33532 (2011).
    • 97 Hao HX, Xie Y, Zhang Y et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485(7397), 195–200 (2012).