A Review on the Recent Research of Polycaprolactone (PCL)

Article Preview

Abstract:

The concept of biodegradable plastics is of considerable interest with respect to solid waste accumulation. Greater efforts have been made in developing degradable biological materials without any environmental pollution to replace the traditional plastics. Among numerous kinds of degradable polymers, polycaprolactone sometimes called PCL, an aliphatic polyester and biocompatible thermoplastic, is currently a most promising and popular material with the brightest development prospect and was considered as the ‘green’ eco friendly material. The application for this biodegradable plastic includes controlled drug releases, tissue engineering, bone scaffolds, packaging and, compost bags etc. This review will provide information on current PCL development, material properties of PCL and its composites, and also its wide spectrum applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

249-255

Citation:

Online since:

December 2015

Export:

Price:

* - Corresponding Author

[1] L. S. Nair and C. T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci., vol. 32, no. 8–9, p.762–798, Aug. (2007).

Google Scholar

[2] J. Rhim, H. Park, and C. Ha, Progress in Polymer Science Bio-nanocomposites for food packaging applications, Prog. Polym. Sci., vol. 38, no. 10–11, p.1629–1652, (2013).

DOI: 10.1016/j.progpolymsci.2013.05.008

Google Scholar

[3] M. A. Woodruff and D. W. Hutmacher, The return of a forgotten polymer—Polycaprolactone in the 21st century, Prog. Polym. Sci., vol. 35, no. 10, p.1217–1256, Oct. (2010).

DOI: 10.1016/j.progpolymsci.2010.04.002

Google Scholar

[4] M. Temtem, T. Casimiro, J. F. Mano, and A. Aguiar-Ricardo, Preparation of membranes with polysulfone/polycaprolactone blends using a high pressure cell specially designed for a CO2-assisted phase inversion, J. Supercrit. Fluids, vol. 43, no. 3, p.542–548, Jan. (2008).

DOI: 10.1016/j.supflu.2007.07.012

Google Scholar

[5] E. Murray, B. C. Thompson, S. Sayyar, and G. G. Wallace, Enzymatic degradation of graphene/polycaprolactone materials for tissue engineering, Polym. Degrad. Stab., vol. 111, p.71–77, Jan. (2015).

DOI: 10.1016/j.polymdegradstab.2014.10.010

Google Scholar

[6] C. Wu and H. Liao, Polycaprolactone-Based Green Renewable Ecocomposites Made from Rice Straw Fiber : Characterization and Assessment of Mechanical and Thermal Properties, (2012).

DOI: 10.1021/ie202002p

Google Scholar

[7] Z. N. Azwa, B. F. Yousif, a. C. Manalo, and W. Karunasena, A review on the degradability of polymeric composites based on natural fibres, Mater. Des., vol. 47, p.424–442, May (2013).

DOI: 10.1016/j.matdes.2012.11.025

Google Scholar

[8] K. Chavalitpanya and S. Phattanarudee, Poly(Lactic Acid)/Polycaprolactone Blends Compatibilized with Block Copolymer, Energy Procedia, vol. 34, p.542–548, (2013).

DOI: 10.1016/j.egypro.2013.06.783

Google Scholar

[9] J. F. Mano, R. A Sousa, L. F. Boesel, N. M. Neves, and R. L. Reis, Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments, Compos. Sci. Technol., vol. 64, no. 6, p.789–817, May (2004).

DOI: 10.1016/j.compscitech.2003.09.001

Google Scholar

[10] O. Faruk, A. K. Bledzki, H. -P. Fink, and M. Sain, Biocomposites reinforced with natural fibers: 2000–2010, Prog. Polym. Sci., vol. 37, no. 11, p.1552–1596, Nov. (2012).

DOI: 10.1016/j.progpolymsci.2012.04.003

Google Scholar

[11] A. Martínez-Abad, G. Sánchez, V. Fuster, J. M. Lagaron, and M. J. Ocio, Antibacterial performance of solvent cast polycaprolactone (PCL) films containing essential oils, Food Control, vol. 34, no. 1, p.214–220, Nov. (2013).

DOI: 10.1016/j.foodcont.2013.04.025

Google Scholar

[12] C. Kelly, S. H. Murphy, G. Leeke, S. M. Howdle, K. M. Shakesheff, and M. J. Jenkins, Rheological studies of polycaprolactone in supercritical CO2, Eur. Polym. J., vol. 49, no. 2, p.464–470, Feb. (2013).

DOI: 10.1016/j.eurpolymj.2012.11.021

Google Scholar

[13] T. T. Ruckh, K. Kumar, M. J. Kipper, and K. C. Popat, Osteogenic differentiation of bone marrow stromal cells on poly(epsilon-caprolactone) nanofiber scaffolds., Acta Biomater., vol. 6, no. 8, p.2949–59, Aug. (2010).

DOI: 10.1016/j.actbio.2010.02.006

Google Scholar

[14] L. Ludueña, A. Vázquez, and V. Alvarez, Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications, Carbohydr. Polym., vol. 87, no. 1, p.411–421, Jan. (2012).

DOI: 10.1016/j.carbpol.2011.07.064

Google Scholar

[15] A. -L. Goffin, J. -M. Raquez, E. Duquesne, G. Siqueira, Y. Habibi, a. Dufresne, and P. Dubois, Poly(ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: Morphology, rheology, and thermo-mechanical properties, Polymer (Guildf)., vol. 52, no. 7, p.1532–1538, Mar. (2011).

DOI: 10.1016/j.polymer.2011.02.004

Google Scholar

[16] J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun'ko, Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites, Carbon N. Y., vol. 44, no. 9, p.1624–1652, Aug. (2006).

DOI: 10.1016/j.carbon.2006.02.038

Google Scholar

[17] K. Chrissafis, G. Antoniadis, K. M. Paraskevopoulos, a. Vassiliou, and D. N. Bikiaris, Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(ε-caprolactone) nanocomposites, Compos. Sci. Technol., vol. 67, no. 10, p.2165–2174, Aug. (2007).

DOI: 10.1016/j.compscitech.2006.10.027

Google Scholar

[18] L. Pan, X. Pei, R. He, Q. Wan, and J. Wang, Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application., Colloids Surf. B. Biointerfaces, vol. 93, p.226–34, May (2012).

DOI: 10.1016/j.colsurfb.2012.01.011

Google Scholar

[19] Y. Kong, J. Yuan, and J. Qiu, Preparation and characterization of aligned carbon nanotubes/polylactic acid composite fibers, Phys. B Condens. Matter, vol. 407, no. 13, p.2451–2457, Jul. (2012).

DOI: 10.1016/j.physb.2012.03.045

Google Scholar

[20] M. Nadler, J. Werner, T. Mahrholz, U. Riedel, and W. Hufenbach, Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites, Compos. Part A Appl. Sci. Manuf., vol. 40, no. 6–7, p.932–937, Jul. (2009).

DOI: 10.1016/j.compositesa.2009.04.021

Google Scholar

[21] M. Rahmat and P. Hubert, Carbon nanotube–polymer interactions in nanocomposites: A review, Compos. Sci. Technol., vol. 72, no. 1, p.72–84, Dec. (2011).

DOI: 10.1016/j.compscitech.2011.10.002

Google Scholar

[22] P. -C. Ma, N. A. Siddiqui, G. Marom, and J. -K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Compos. Part A Appl. Sci. Manuf., vol. 41, no. 10, p.1345–1367, Oct. (2010).

DOI: 10.1016/j.compositesa.2010.07.003

Google Scholar

[23] M. D. Sanchez-Garcia, J. M. Lagaron, and S. V. Hoa, Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymers, Compos. Sci. Technol., vol. 70, no. 7, p.1095–1105, Jul. (2010).

DOI: 10.1016/j.compscitech.2010.02.015

Google Scholar

[24] M. M. Reddy, S. Vivekanandhan, M. Misra, S. K. Bhatia, and A. K. Mohanty, Biobased plastics and bionanocomposites: Current status and future opportunities, Prog. Polym. Sci., vol. 38, no. 10–11, p.1653–1689, Oct. (2013).

DOI: 10.1016/j.progpolymsci.2013.05.006

Google Scholar

[25] Z. X. Meng, W. Zheng, L. Li, and Y. F. Zheng, Fabrication and characterization of three-dimensional nanofiber membrance of PCL–MWCNTs by electrospinning, Mater. Sci. Eng. C, vol. 30, no. 7, p.1014–1021, Aug. (2010).

DOI: 10.1016/j.msec.2010.05.003

Google Scholar

[26] A. Taghizadeh and B. D. Favis, Carbon nanotubes in blends of polycaprolactone/thermoplastic starch., Carbohydr. Polym., vol. 98, no. 1, p.189–98, Oct. (2013).

DOI: 10.1016/j.carbpol.2013.05.024

Google Scholar

[27] I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, and J. M. Kenny, Biodegradable polymer matrix nanocomposites for tissue engineering: A review, Polym. Degrad. Stab., vol. 95, no. 11, p.2126–2146, Nov. (2010).

DOI: 10.1016/j.polymdegradstab.2010.06.007

Google Scholar

[28] S. Sowmya, J. D. Bumgardener, K. P. Chennazhi, S. V. Nair, and R. Jayakumar, Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration, Prog. Polym. Sci., vol. 38, no. 10–11, p.1748–1772, Oct. (2013).

DOI: 10.1016/j.progpolymsci.2013.05.005

Google Scholar

[29] Z. Li and B. H. Tan, Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications., Mater. Sci. Eng. C. Mater. Biol. Appl., vol. 45, p.620–34, Dec. (2014).

DOI: 10.1016/j.msec.2014.06.003

Google Scholar

[30] G. Jin, M. P. Prabhakaran, D. Kai, S. K. Annamalai, K. D. Arunachalam, and S. Ramakrishna, Tissue engineered plant extracts as nanofibrous wound dressing., Biomaterials, vol. 34, no. 3, p.724–34, Jan. (2013).

DOI: 10.1016/j.biomaterials.2012.10.026

Google Scholar