Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Muscarinic acetylcholine receptors: novel opportunities for drug development

Key Points

  • The five muscarinic acetylcholine receptors (mAChRs) are prototypical class A G protein-coupled receptors (GPCRs).

  • mAChRs regulate many fundamental functions of the central and peripheral nervous system.

  • Recent studies with novel mAChR mouse models have provided detailed insights into the physiological roles of the different mAChR subtypes (M1 to M5).

  • High-resolution structural information is now available for the M2 and M3 receptors, providing a structural basis for mAChR activation and the binding of different types of muscarinic ligands, including allosteric modulators.

  • These new findings should facilitate the development of novel drugs targeting muscarinic receptors for the treatment of many severe pathophysiological conditions.

Abstract

The muscarinic acetylcholine receptors are a subfamily of G protein-coupled receptors that regulate numerous fundamental functions of the central and peripheral nervous system. The past few years have witnessed unprecedented new insights into muscarinic receptor physiology, pharmacology and structure. These advances include the first structural views of muscarinic receptors in both inactive and active conformations, as well as a better understanding of the molecular underpinnings of muscarinic receptor regulation by allosteric modulators. These recent findings should facilitate the development of new muscarinic receptor subtype-selective ligands that could prove to be useful for the treatment of many severe pathophysiological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modes of targeting mAChRs (GPCRs) by different classes of ligands.
Figure 2: Overall structure of the M2 and M3 receptors.
Figure 3: Structure of the orthosteric mAChR ligand binding site.
Figure 4: Activation and allosteric modulation of the M2 receptor.
Figure 5: Hypothetical mechanism for allosteric modulation of the M2 receptor by a PAM.

Similar content being viewed by others

References

  1. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Hulme, E. C., Birdsall, N. J. & Buckley, N. J. Muscarinic receptor subtypes. Annu. Rev. Pharmacol. Toxicol. 30, 633–673 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Wess, J., Eglen, R. M. & Gautam, D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nature Rev. Drug Discov. 6, 721–733 (2007).

    Article  CAS  Google Scholar 

  4. Wess, J. Novel muscarinic receptor mutant mouse models. Handb. Exp. Pharmacol. 208, 95–117 (2012).

    Article  CAS  Google Scholar 

  5. Conn, P. J., Jones, C. K. & Lindsley, C. W. Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol. Sci. 30, 148–155 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wootten, D., Christopoulos, A. & Sexton, P. M. Emerging paradigms in GPCR allostery: implications for drug discovery. Nature Rev. Drug Discov. 12, 630–644 (2013).

    Article  CAS  Google Scholar 

  7. Lane, J. R., Sexton, P. M. & Christopoulos, A. Bridging the gap: bitopic ligands of G-protein-coupled receptors. Trends Pharmacol. Sci. 34, 59–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Bock, A. & Mohr, K. Dualsteric GPCR targeting and functional selectivity: the paradigmatic M2 muscarinic acetylcholine receptor. Drug Discov. Today Technol. 10, e245–e252 (2013).

    Article  PubMed  Google Scholar 

  9. De Amici, M., Dallanoce, C., Holzgrabe, U., Tränkle, C. & Mohr, K. Allosteric ligands for G protein-coupled receptors: a novel strategy with attractive therapeutic opportunities. Med. Res. Rev. 30, 463–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Kruse, A. C. et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556 (2012). This study reports the first high-resolution structure of the M 3 receptor in complex with tiotropium, a clinically used muscarinic antagonist and inverse agonist.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Haga, K. et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482, 547–551 (2012). In this study, the authors present the first high-resolution structure of the M 2 receptor in complex with an orthosteric muscarinic antagonist and inverse agonist — QNB.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013). This study provides the first high-resolution structural information of an agonist-activated mAChR (the M 2 subtype) and reveals how a PAM interacts with the M 2 receptor.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dror, R. O. et al. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503, 295–299 (2013). This study represents a computational biology breakthrough in delineating the molecular mechanisms governing the allosteric modulation of the M 2 receptor.

    Article  CAS  PubMed  Google Scholar 

  14. Ballard, C. et al. Alzheimer's disease. Lancet 377, 1019–1031 (2011).

    Article  PubMed  Google Scholar 

  15. Langmead, C. J., Watson, J. & Reavill, C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol. Ther. 117, 232–243 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Davis, A. A., Fritz, J. J., Wess, J., Lah, J. J. & Levey, A. I. Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo. J. Neurosci. 30, 4190–4196 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Medeiros, R. et al. Loss of muscarinic M1 receptor exacerbates Alzheimer's disease-like pathology and cognitive decline. Am. J. Pathol. 179, 980–991 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Melancon, B. J., Tarr, J. C., Panarese, J. D., Wood, M. R. & Lindsley, C. W. Allosteric modulation of the M1 muscarinic acetylcholine receptor: improving cognition and a potential treatment for schizophrenia and Alzheimer's disease. Drug Discov. Today 18, 1185–1199 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Davie, B. J., Christopoulos, A. & Scammells, P. J. Development of M1 mAChR allosteric and bitopic ligands: prospective therapeutics for the treatment of cognitive deficits. ACS Chem. Neurosci. 4, 1026–1048 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. van Os, J. & Kapur, S. Schizophrenia. Lancet 374, 635–645 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. McKinzie, D. L. & Bymaster, F. P. Muscarinic mechanisms in psychotic disorders. Handb. Exp. Pharmacol. 213, 233–265 (2012).

    Article  CAS  Google Scholar 

  22. Bodick, N. C. et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch. Neurol. 54, 465–473 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Shekhar, A. et al. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am. J. Psychiatry 165, 1033–1039 (2008).

    Article  PubMed  Google Scholar 

  24. Jeon, J. et al. A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J. Neurosci. 30, 2396–2405 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Dencker, D. et al. Involvement of a subpopulation of neuronal M4 muscarinic acetylcholine receptors in the antipsychotic-like effects of the M1/M4 preferring muscarinic receptor agonist xanomeline. J. Neurosci. 31, 5905–5908 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Foster, D. J., Jones, C. K. & Conn, P. J. Emerging approaches for treatment of schizophrenia: modulation of cholinergic signaling. Discov. Med. 14, 413–420 (2012).

    PubMed Central  PubMed  Google Scholar 

  27. Jones, C. K., Byun, N. & Bubser, M. Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology 37, 16–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Dencker, D. et al. Muscarinic acetylcholine receptor subtypes as potential drug targets for the treatment of schizophrenia, drug abuse and Parkinson's disease. ACS Chem. Neurosci. 3, 80–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Sofuoglu, M. & Mooney, M. Cholinergic functioning in stimulant addiction: implications for medications development. CNS Drugs 23, 939–952 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Thomsen, M. et al. Attenuation of cocaine's reinforcing and discriminative stimulus effects via muscarinic M1 acetylcholine receptor stimulation. J. Pharmacol. Exp. Ther. 332, 959–969 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Thomsen, M. et al. Contribution of both M1 and M4 receptors to muscarinic agonist-mediated attenuation of the cocaine discriminative stimulus in mice. Psychopharmacol. 220, 673–685 (2012).

    Article  CAS  Google Scholar 

  32. Schmidt, L. S. et al. Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice. Psychopharmacol. 216, 367–378 (2011).

    Article  CAS  Google Scholar 

  33. Lam, D. W. & LeRoith, D. The worldwide diabetes epidemic. Curr. Opin. Endocrinol. Diabetes Obes. 19, 93–96 (2012).

    Article  PubMed  Google Scholar 

  34. Gautam, D. et al. A critical role for β cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell. Metab. 3, 449–461 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Gautam, D. et al. Beneficial metabolic effects caused by persistent activation of β-cell M3 muscarinic acetylcholine receptors in transgenic mice. Endocrinology 151, 5185–5194 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Guettier, J. M. et al. A chemical-genetic approach to study G protein regulation of β cell function in vivo. Proc. Natl Acad. Sci. USA 106, 19197–19202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jain, S. et al. Chronic activation of a designer Gq-coupled receptor improves β cell function. J. Clin. Invest. 123, 1750–1762 (2013). This study shows that chronic, exogenous ligand-induced activation of an M 3 receptor-derived designer receptor expressed by pancreatic β -cells prevents diabetes in different mouse models.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sassmann, A. et al. The Gq/G11-mediated signaling pathway is critical for autocrine potentiation of insulin secretion in mice. J. Clin. Invest. 120, 2184–2193 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kong, K. C. et al. M3-muscarinic receptor promotes insulin release via receptor phosphorylation/arrestin-dependent activation of protein kinase D1. Proc. Natl Acad. Sci. USA 107, 21181–21186 (2010). This analysis of phosphorylation-deficient M 3 receptor knock-in mice strongly suggests that arrestin-dependent signalling pathways contribute to M 3 receptor-stimulated insulin release.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakajima, K. & Wess, J. Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol. Pharmacol. 82, 575–582 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Shah, N., Khurana, S., Cheng, K. & Raufman, J. P. Muscarinic receptors and ligands in cancer. Am. J. Physiol. Cell Physiol. 296, C221–C232 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Spindel, E. R. Muscarinic receptor agonists and antagonists: effects on cancer. Handb. Exp. Pharmacol. 208, 451–468 (2012).

    Article  CAS  Google Scholar 

  44. Raufman, J. P. et al. Genetic ablation of M3 muscarinic receptors attenuates murine colon epithelial cell proliferation and neoplasia. Cancer Res. 68, 3573–3578 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Raufman, J. P. et al. Muscarinic receptor subtype-3 gene ablation and scopolamine butylbromide treatment attenuate small intestinal neoplasia in Apcmin/+ mice. Carcinogenesis 32, 1396–1402 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013). This study reports that M 1 receptor deficiency inhibits mAChR-mediated prostate cancer invasion and metastasis in two mouse models of prostate cancer.

    Article  PubMed  Google Scholar 

  47. Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nature Rev. Drug Discov. 1, 198–210 (2002).

    Article  CAS  Google Scholar 

  48. May, L. T., Leach, K., Sexton, P. M. & Christopoulos, A. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Christopoulos, A., Lanzafame, A. & Mitchelson, F. Allosteric interactions at muscarinic cholinoceptors. Clin. Exp. Pharmacol. Physiol. 25, 185–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Birdsall, N. J. & Lazareno, S. Allosterism at muscarinic receptors: ligands and mechanisms. Mini Rev. Med. Chem. 5, 523–543 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Conn, P. J., Christopoulos, A. & Lindsley, C. W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nature Rev. Drug Discov. 8, 41–54 (2009).

    Article  CAS  Google Scholar 

  52. Keov, P., Sexton, P. M. & Christopoulos, A. Allosteric modulation of G protein-coupled receptors: a pharmacological perspective. Neuropharmacology 60, 24–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Keov, P. et al. Reverse engineering of the selective agonist TBPB unveils both orthosteric and allosteric modes of action at the M1 muscarinic acetylcholine receptor. Mol. Pharmacol. 84, 425–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Kenakin, T. & Christopoulos, A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nature Rev. Drug Discov. 12, 205–216 (2013).

    Article  CAS  Google Scholar 

  55. Ma, L. et al. Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc. Natl Acad. Sci. USA 106, 15950–15955 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shirey, J. K. et al. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J. Neurosci. 29, 14271–14286 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Canals, M. et al. A Monod–Wyman–Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation. J. Biol. Chem. 287, 650–659 (2012). This study presents a chemical biology framework with which to study and classify the simplest allosteric ligand behaviours.

    Article  CAS  PubMed  Google Scholar 

  58. Lazareno, S. & Birdsall, N. J. Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol. Pharmacol. 48, 362–378 (1995).

    CAS  PubMed  Google Scholar 

  59. Kenakin, T. New concepts in drug discovery: collateral efficacy and permissive antagonism. Nature Rev. Drug Discov. 4, 919–927 (2005).

    Article  CAS  Google Scholar 

  60. Valant, C., Felder, C. C., Sexton, P. M. & Christopoulos, A. Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Mol. Pharmacol. 81, 41–52 (2012). This study highlights the importance of probe dependence in the study of the effects of allosteric modulators.

    Article  CAS  PubMed  Google Scholar 

  61. Rajagopal, S., Rajagopal, K. & Lefkowitz, R. J. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nature Rev. Drug Discov. 9, 373–386 (2010).

    Article  CAS  Google Scholar 

  62. Stallaert, W., Christopoulos, A. & Bouvier, M. Ligand functional selectivity and quantitative pharmacology at G protein-coupled receptors. Expert Opin. Drug Discov. 6, 811–825 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Marlo, J. E. et al. Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol. Pharmacol. 75, 577–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Lazareno, S., Dolezal, V., Popham, A. & Birdsall, N. J. Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol. Pharmacol. 65, 257–266 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Chan, W. Y. et al. Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc. Natl Acad. Sci. USA 105, 10978–10983 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Suratman, S. et al. Impact of species variability and 'probe-dependence' on the detection and in vivo validation of allosteric modulation at the M4 muscarinic acetylcholine receptor. Br. J. Pharmacol. 162, 1659–1670 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Valant, C., Sexton, P. M. & Christopoulos, A. Orthosteric/allosteric bitopic ligands: going hybrid at GPCRs. Mol. Interv. 9, 125–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Mohr, K. et al. Rational design of dualsteric GPCR ligands: quests and promise. Br. J. Pharmacol. 159, 997–1008 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Melancon, B. J. et al. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. J. Med. Chem. 55, 1445–1464 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Valant, C., Robert Lane, J., Sexton, P. M. & Christopoulos, A. The best of both worlds? Bitopic orthosteric/allosteric ligands of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 52, 153–178 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Disingrini, T. et al. Design, synthesis, and action of oxotremorine-related hybrid-type allosteric modulators of muscarinic acetylcholine receptors. J. Med. Chem. 49, 366–372 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Antony, J. et al. Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB J. 23, 442–450 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Kebig, A., Kostenis, E., Mohr, K. & Mohr-Andra, M. An optical dynamic mass redistribution assay reveals biased signaling of dualsteric GPCR activators. J. Recept. Signal Transduct. Res. 29, 140–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Bock, A. et al. The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling. Nature Commun. 3, 1044 (2012).

    Article  CAS  Google Scholar 

  75. Steinfeld, T., Mammen, M., Smith, J. A., Wilson, R. D. & Jasper, J. R. A novel multivalent ligand that bridges the allosteric and orthosteric binding sites of the M2 muscarinic receptor. Mol. Pharmacol. 72, 291–302 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Valant, C. et al. A novel mechanism of G protein-coupled receptor functional selectivity. Muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J. Biol. Chem. 283, 29312–29321 (2008). This is the first study to show that functionally selective ligands may mediate their behaviour via a bitopic mechanism.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Spalding, T. A. et al. Discovery of an ectopic activation site on the M1 muscarinic receptor. Mol. Pharmacol. 61, 1297–1302 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Langmead, C. J. et al. Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M1 receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol. Pharmacol. 69, 236–246 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Jones, C. K. et al. Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J. Neurosci. 28, 10422–10433 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Gregory, K. J., Hall, N. E., Tobin, A. B., Sexton, P. M. & Christopoulos, A. Identification of orthosteric and allosteric site mutations in M2 muscarinic acetylcholine receptors that contribute to ligand-selective signaling bias. J. Biol. Chem. 285, 7459–7474 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Avlani, V. A. et al. Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor. Mol. Pharmacol. 78, 94–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Monod, J., Wyman, J. & Changeux, J. P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  PubMed  Google Scholar 

  83. Changeux, J. P. Allosteric receptors: from electric organ to cognition. Annu. Rev. Pharmacol. Toxicol. 50, 1–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Canals, M., Sexton, P. M. & Christopoulos, A. Allostery in GPCRs: 'MWC' revisited. Trends Biochem. Sci. 36, 663–672 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Ehlert, F. J. & Griffin, M. T. Two-state models and the analysis of the allosteric effect of gallamine at the M2 muscarinic receptor. J. Pharmacol. Exp. Ther. 325, 1039–1060 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Abdul-Ridha, A., Lane, J. R., Sexton, P. M., Canals, M. & Christopoulos, A. Allosteric modulation of a chemogenetically modified G protein-coupled receptor. Mol. Pharmacol. 83, 521–530 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Lazareno, S., Popham, A. & Birdsall, N. J. Allosteric interactions of staurosporine and other indolocarbazoles with N-[methyl-3H] scopolamine and acetylcholine at muscarinic receptor subtypes: identification of a second allosteric site. Mol. Pharmacol. 58, 194–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Lazareno, S., Popham, A. & Birdsall, N. J. Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol. Pharmacol. 62, 1492–1505 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Espinoza-Fonseca, L. M. & Trujillo-Ferrara, J. G. The existence of a second allosteric site on the M1 muscarinic acetylcholine receptor and its implications for drug design. Bioorg. Med. Chem. Lett. 16, 1217–1220 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Redka, D. S., Pisterzi, L. F. & Wells, J. W. Binding of orthosteric ligands to the allosteric site of the M2 muscarinic cholinergic receptor. Mol. Pharmacol. 74, 834–843 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Shivnaraine, R. V., Huang, X. P., Seidenberg, M., Ellis, J. & Wells, J. W. Heterotropic cooperativity within and between protomers of an oligomeric M2 muscarinic receptor. Biochemistry 51, 4518–4540 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Chae, P. S. et al. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nature Methods 7, 1003–1008 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Landau, E. M. & Rosenbusch, J. P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl Acad. Sci. USA 93, 14532–14535 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nature Protoc. 4, 706–731 (2009).

    Article  CAS  Google Scholar 

  96. Smith, J. L., Fischetti, R. F. & Yamamoto, M. Micro-crystallography comes of age. Curr. Opin. Struct. Biol. 22, 602–612 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Shimamura, T. et al. Structure of the human histamine H1 receptor complex with doxepin. Nature 475, 65–70 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Chien, E. Y. et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091–1095 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Rasmussen, S. G. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Wang, C. et al. Structural basis for molecular recognition at serotonin receptors. Science 340, 610–614 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Ballesteros, J. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 25, 366–428 (1995).

    Article  CAS  Google Scholar 

  105. Kruse, A. C. et al. Muscarinic receptors as model targets and antitargets for structure-based ligand discovery. Mol. Pharmacol. 84, 528–540 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Tautermann, C. S. et al. Molecular basis for the long duration of action and kinetic selectivity of tiotropium for the muscarinic M3 receptor. J. Med. Chem. 56, 8746–8756 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Gregory, K. J., Sexton, P. M. & Christopoulos, A. Allosteric modulation of muscarinic acetylcholine receptors. Curr. Neuropharmacol. 5, 157–167 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497–502 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Choe, H. W. et al. Crystal structure of metarhodopsin II. Nature 471, 651–655 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Standfuss, J. et al. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471, 656–660 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011). This crystal structure represents the first high-resolution view of the active-state ternary complex composed of an agonist-occupied GPCR (β 2 -AR) and a G protein (nucleotide-free G s heterotrimer).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Lebon, G. et al. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474, 521–525 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Xu, F. et al. Structure of an agonist-bound human A2A adenosine receptor. Science 332, 322–327 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Kamsler, A., McHugh, J., Gerber, D., Huang, S. Y. & Tonegawa, S. Presynaptic M1 muscarinic receptors are necessary for mGluR long-term depression in the hippocampus. Proc. Natl Acad. Sci. USA 107, 1618–1623 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gautam, D. et al. Neuronal M3 muscarinic acetylcholine receptors are essential for somatotroph proliferation and normal somatic growth. Proc. Natl Acad. Sci. USA 106, 6398–6403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shi, Y. et al. Signaling through the M3 muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell. Metab. 11, 231–238 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Li, J. H. et al. Hepatic muscarinic acetylcholine receptors are not critically involved in maintaining glucose homeostasis in mice. Diabetes 58, 2776–2787 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Arteaga-Solis, E. et al. Inhibition of leptin regulation of parasympathetic signaling as a cause of extreme body weight-associated asthma. Cell. Metab. 17, 35–48 (2013). This study reports that leptin signalling in the brain promotes bronchodilation by inhibiting parasympathetic signalling through airway smooth muscle M 3 receptors.

    Article  CAS  PubMed  Google Scholar 

  121. Poulin, B. et al. The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc. Natl Acad. Sci. USA 107, 9440–9445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bendor, J. et al. AGAP1/AP-3-dependent endocytic recycling of M5 muscarinic receptors promotes dopamine release. EMBO J. 29, 2813–2826 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all investigators whose important contributions could not be acknowledged owing to space limitations. The work of A.C.K. and B.K.K. was supported by a US National Science Foundation Graduate Research Fellowship (A.C.K.) and by the National Science Foundation grant CHE-1223785 and US National Institutes of Health (NIH) grant U19GM106990 (B.K.K.). A.C. and P.M.S. received funds from Program Grant No. APP1055134 of the National Health and Medical Research Council (NHMRC) of Australia. A.C. and P.M.S. are NHMRC Principal Research Fellows. The research of D.G. and J.W. was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) at the NIH. We thank all our co-workers and collaborators for their invaluable contributions to the work summarized in this Review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Wess.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruse, A., Kobilka, B., Gautam, D. et al. Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov 13, 549–560 (2014). https://doi.org/10.1038/nrd4295

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4295

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing