Skip to main content

Advertisement

Log in

Is land use impact assessment in LCA applicable for forest biomass value chains? Findings from comparison of use of Scandinavian wood, agro-biomass and peat for energy

  • LAND USE IN LCA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

A framework for the inclusion of land use impact assessment and a set of land use impact indicators has been recently proposed for life cycle assessment (LCA) and no case studies are available for forest biomass. The proposed methodology is tested for Scandinavian managed forestry; a comparative case study is made for energy from wood, agro-biomass and peat; and sensitivity to forest management options is analysed.

Methods

The functional unit of this comparative case study is 1 GJ of energy in solid fuels. The land use impact assessment framework of the United Nations Environment Programme and the Society of Environmental Toxicology and Chemistry (UNEP-SETAC) is followed and its application for wood biomass is critically analysed. Applied midpoint indicators include ecological footprint and human appropriation of net primary production, global warming potential indicator for biomass (GWPbio-100) and impact indicators proposed by UNEP-SETAC on ecosystem services and biodiversity. Options for forest biomass land inventory modelling are discussed. The system boundary covers only the biomass acquisition phase. Management scenarios are formulated for forest and barley biomass, and a sensitivity analysis focuses on impacts of land transformations for agro-biomass.

Results and discussion

Meaningful differences were found in between solid biofuels from distinct land use classes. The impact indicator results were sensitive to land occupation and transformation and differed significantly from inventory results. Current impact assessment method is not sensitive to land management scenarios because the published characterisation factors are still too coarse and indicate differences only between land use types. All indicators on ecosystem services and biodiversity were sensitive to the assumptions related with land transformation. The land occupation (m2a) approach in inventory was found challenging for Scandinavian wood, due to long rotation periods and variable intensities of harvests. Some suggestions of UNEP-SETAC were challenged for the sake of practicality and relevance for decision support.

Conclusions

Land use impact assessment framework for LCA and life cycle impact assessment (LCIA) indicators could be applied in a comparison of solid bioenergy sources. Although forest bioenergy has higher land occupation than agro-bioenergy, LCIA indicator results are of similar magnitude or even lower for forest bioenergy. Previous literature indicates that environmental impacts of land use are significant, but it remains questionable if these are captured with satisfactory reliability with the applied LCA methodology, especially for forest biomass. Short and long time perspectives of land use impacts should be studied in LCA with characterisation factors for all relevant timeframes, not only 500 years, with a forward-looking perspective. Characterisation factors need to be modelled further for different (forest) land management intensities and for peat excavation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Data on future forest management scenarios have been produced in Finnish Forest Cluster project EffFibre and were provided as written notification from Jari Hynynen from the Finnish Forest Research Institute METLA.

  2. LCA is a tool to support decision-making. A decision-maker may be e.g. a policy maker, corporate manager or a consumer, and the relevant decision-making context should be clear for the LCA practitioner in defining the goal and scope of the study.

References

  • Alakangas E (2000) Suomessa käytettävien polttoaineiden ominaisuuksia [Properties of fuels used in Finland]. Espoo 2000. Valtion teknillinen tutkimuskeskus, VTT Research Notes 2045

  • Alvarenga RAF, Dewulf J, Van Langenhove H, Huijbregts MAJ (2013) Exergy-based accounting for land as a natural resource in life cycle assessment. Int J Life Cycle Assess 18(5):939–947

    Article  Google Scholar 

  • Baitz M, Albrecht S, Brauner E (2013) LCA’s theory and practice: like ebony and ivory living in perfect harmony? Int J Life Cycle Assess 18:5–13

    Article  Google Scholar 

  • Barona E, Ramankutty N, Hyman G, Coomes OT (2010) The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ Res Lett 5:024002

    Article  Google Scholar 

  • Brandão M, Milà i Canals L (2013) Global characterisation factors to assess land use impacts on biotic production. Int J Life Cycle Assess 18:1243–1252

    Article  Google Scholar 

  • Brandão M, Milà i Canals L, Clift R (2010) Soil organic carbon changes in the cultivation of energy crops: implications for GHG balances and soil quality for use in LCA. Biomass Bioenerg 35:2323–2336

    Article  Google Scholar 

  • Cespi D, Passarini F, Ciacci L, Vassura I, Castellani V, Collina E, Piazzalunga A, Morselli L (2013) Heating systems LCA: comparison of biomass-based appliances. Int J Life Cycle Assess. doi:10.1007/s11367-013-0611-3

    Google Scholar 

  • Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresource Technol 102(2):437–451

    Article  CAS  Google Scholar 

  • Cherubini F, Peters GP, Berntsen T, Strømman AH, Hertwich E (2011) CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. Glob Change Biol Bioenerg 3:413–426

    Article  CAS  Google Scholar 

  • Coelho CRV, Michelsen O (2013) Land use impacts on biodiversity from kiwifruit production in New Zealand assessed with global and national datasets. Int J Life Cycle Assess. doi:10.1007/s11367-013-0628-7

    Google Scholar 

  • de Baan L, Alkemade R, Koellner T (2013a) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18:1216–1230

    Article  Google Scholar 

  • de Baan L, Mutel CL, Curran M, Hellweg S, Koellner T (2013b) Land use in life cycle assessment: global characterization factors based on regional and global potential species extinction. Environ Sci Technol 47:9281–9290

    Article  Google Scholar 

  • De Jong J, Humphrey JW, Smith M, Ravn HP (2011) The impact of forest management on biodiversity. Paper 1 in Raulund-Rasmussen K, De Jong J, Humphrey JW et al. Papers on impacts of forest management on environmental services. EFI Technical Report 57, 2011

  • Directive 2009/28/EC (2011) Directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources. The Official Journal of the European Union. Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=Oj:L:2009:140:0016:0062:en:PDF(accessed 21 May 2013)

  • EC European Commission (2011) Energy roadmap 2050. COM(2011) 885, 15 December. URL http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0885:FIN:EN:PDF[Accessed on 14.6.2013]

  • ECON Pöyry (2008) Status and potentials of bioenergy in the Nordic countries—summary. ECON Pöyry-Report no. 2008–057. URL http://bioenergypromotion.org/project/publications/status-and-potentials-of-bioenergy-in-the-nordic-countries-summary/[Accessed on 14.6.2013]

  • Ewing B, Goldfinger S, Wackernagel M, Stechbart M, Rizk SM, Reed A, Kitzes J (2010) Ecological footprint atlas 2010. Global Footprint Network, Oakland

    Google Scholar 

  • Finnish Forest Research Institute METLA (2011) Finnish statistical yearbook of forestry. Metsäntutkimuslaitos METLA, Vantaa. ISBN 978-951-40-2330-9

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91:1–21

    Article  Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts MAJ, De Schryver A, Struijs J, van Zelm R (2008) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. The Hague, The Netherlands: VROM, 2009

  • Gundersen P, Raulund-Rasmussen K, Ring E (2011) The impact of forest management on water quality in Europe. Paper 4 in Raulund-Rasmussen K, De Jong J, Humphrey JW et al. Papers on impacts of forest management on environmental services. EFI Technical Report 57, 2011

  • Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. PNAS 104:12942–12947

    Article  CAS  Google Scholar 

  • Hansen K, Rosenqvist L, Vsterdal L, Gundersen P (2007) Nitrate leaching from three afforestation chronosequences on former arable land in Denmark. Glob Change Biol 13:1250–1264

    Article  Google Scholar 

  • Hansen K, Stupak I, Ring E, Raulund-Rasmussen K (2011) The impact of forest management on soil quality. Paper 3 in Raulund-Rasmussen K, De Jong J, Humphrey JW et al. Papers on impacts of forest management on environmental services. EFI Technical Report 57, 2011

  • Hanski I, Ovaskainen O (2002) Extinction debt at extinction threshold. Conserv Biol 16:666–673

    Article  Google Scholar 

  • Helin T, Sokka L, Soimakallio S, Pingoud K, Pajula T (2013) Approaches for inclusion of forest carbon cycle in life cycle assessment—a review. Glob Change Biol Bioenerg 5(5):475–486

    Article  CAS  Google Scholar 

  • Helmisaari H-S, Hanssen KH, Jacobson S et al (2011) Logging residue removal after thinning in Nordic boreal forests: long-term impact on tree growth. Forest Ecol Manag 261:1919–1927

    Article  Google Scholar 

  • Hertel T, Golub WA, Jones AD, O'Hare M, Plevin RJ, Kammen DM (2010) Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. Bioscience 60(3):223–231

    Article  Google Scholar 

  • Hobbs RJ, Arico S, Aronson J et al (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecol Biogeogr 15:1–7

    Article  Google Scholar 

  • Huijbregts MAJ, Hellweg S, Frischknecht R, Hungerbühlerd K, Hendriks AJ (2008) Ecological footprint accounting in the life cycle assessment of products. Ecol Econ 64:798–807

    Article  Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2006) IPCC good practice guidance for national inventories. Volume 2: energy. Chapter 2: stationary combustion. URL http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf[Accessed on 14.6.2013]

  • JRC-IES Joint Research Centre – Institute for Environment & Sustainability (2010) International Reference Life Cycle Data System (ILCD) handbook. JRC-IES, Ispra, Italy

  • Jyske T, Mäkinen H, Saranpää P (2008) Wood density within Norway spruce stems. Silva Fennica 42(3):439–455

    Article  Google Scholar 

  • Katzensteiner K, Kilmo E, Szukics U, Delaney CM (2011) Impact of forest management alternatives on water budgets and runoff processes. Paper 2 in Raulund-Rasmussen K, De Jong J, Humphrey JW et al. Papers on impacts of forest management on environmental services. EFI Technical Report 57, 2011

  • Kirkinen J, Minkkinen K, Penttilä T, Kojola S, Sievänen R, Alm J, Saarnio S, Silvan N, Laine J, Savolainen I (2007) Greenhouse gas impact due to different peat fuel utilisation chains in Finland—a life cycle approach. Boreal Environ Res 12(2):211–223

    CAS  Google Scholar 

  • Kirkinen J, Palosuo T, Holmgren K, Savolainen I (2008) Greenhouse impact due to the use of combustible fuels: life cycle viewpoint and relative radiative forcing commitment. Environ Manag 42:458–469

    Article  Google Scholar 

  • Kløverpris J, Wenzel H, Nielsen PH (2008) Life cycle inventory modelling of land use induced by crop consumption. Part 1: conceptual analysis and methodological proposal. Int J Life Cycle Assess 13(1):13–21

    Google Scholar 

  • Koellner T, Geyer R (eds) (2013) Global land use impacts on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18(6):1185–1187

    Google Scholar 

  • Koellner T, de Baan L, Beck T, Brandão M, Civit B, Margni M, Milà i Canals L, Saad R, de Souza DM, Müller-Wenk R (2013a) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18:1188–1202

    Article  Google Scholar 

  • Koellner T, de Baan L, Beck T, Brandão M, Civit B, Goedkoop M, Margni M, Milà i Canals L, Müller-Wenk K, Weidema B, Wittstock B (2013b) Principles for life cycle inventories of land use on a global scale. Int J Life Cycle Assess 18:1203–1215

    Article  Google Scholar 

  • Köhl M, Bastup-Birk A, Marchetti M et al (2011) Criterion 3: maintenance and encouragement of productive functions of forests (wood and non-wood). In: State of Europe’s forests 2011. Status and trends in sustainable forest management in Europe (eds FOREST EUROPE, UNECE and FAO). pp. 51–64, Ministerial Conference on the Protection of Forests in Europe, Oslo

  • Koponen K, Soimakallio S (2013) Reconsideration of the land use baseline may have a significant impact on the GHG balances of agro-bioenergy. Bioenergy Australia Conference 2013. 25-27. November 2013, Hunter Valley, NSW, Australia

  • Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215

    Article  CAS  Google Scholar 

  • Mäkinen T, Soimakallio S, Paappanen T, Pahkala K, Mikkola H (2006) Liikenteen biopolttoaineiden ja peltoenergian kasvihuonekaasutaseet ja uudet liiketoimintakonseptit [Greenhouse gas balances and new business opportunities for biomass-based transportation fuels and agro-biomass in Finland]. Appendices E & K. Espoo 2006. VTT Research Notes 2357

  • Mattila T, Seppälä J, Nissinen A, Mäenpää I (2011) Land use impacts of industries and products in the Finnish economy: a comparison of three indicators. Biomass Bioenerg 35:4781–4787

    Article  Google Scholar 

  • Mattila T, Helin T, Antikainen R (2012) Land use indicators in life cycle assessment—a case study on beer production. Int J Life Cycle Assess 17:277–286

    Article  CAS  Google Scholar 

  • Michelsen O (2008) Assessment of land use impact on biodiversity. Proposal of a new methodology exemplified with forestry operations in Norway. Int J Life Cycle Assess 13(1):22–31

    Google Scholar 

  • Michelsen O, Cherubini F, Strømman AH (2012) Impact assessment of biodiversity and carbon pools from land use and land use changes in life cycle assessment, exemplified with forestry operations in Norway. J Ind Ecol 16:231–242

    Article  Google Scholar 

  • Milà i Canals L, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchel R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007a) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5–15

    Article  Google Scholar 

  • Milà i Canals L, Romanyà J, Cowell SJ (2007b) Method for assessing impacts on life support functions (LSF) related to the use of ‘fertile land’ in life cycle assessment (LCA). J Clean Prod 15:1426–1440

    Article  Google Scholar 

  • Milà i Canals L, Rigarlsford G, Sim S (2013) Land use impact assessment of margarine. Int J Life Cycle Assess 18:1265–1277

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being. Synthesis. Washington: Island. http://www.maweb.org/documents/document.354.aspx.pdf

  • Müller-Wenk R, Brandão M (2010) Climatic impact of land use in LCA—carbon transfers between vegetation/soil and air. Int J Life Cycle Assess 15:172–182

    Article  Google Scholar 

  • Núñez M, Antón A, Muñoz P, Rieradevall J (2013) Inclusion of soil erosion impacts in life cycle assessment on a global scale: application to energy crops in Spain. Int J Life Cycle Assess 18:755–767

    Article  Google Scholar 

  • Pingoud K, Ekholm T, Savolainen I (2012) Global warming potential (GWP) factors and warming payback time as climate indicators of forest biomass use. Mitig Adapt Strateg Glob Change 17:369–383

    Article  Google Scholar 

  • Plevin RJ, O’Hare M, Jones AD, Torn MS, Gibbs HK (2010) Greenhouse gas emissions from biofuels: indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44(21):8015–8021

    Article  CAS  Google Scholar 

  • Raulund-Rasmussen K, De Jong J, Humphrey JW et al (2011) Papers on impacts of forest management on environmental services. EFI Technical Report 57:2011

    Google Scholar 

  • Ridoutt BG, Page G, Opie K, Huang J, Bellotti W (2013) Carbon, water and land use footprints of beef cattle production systems in southern Australia. J Clean Prod. doi:10.1016/j.jclepro.2013.08.012

  • Rockström J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461:472–475

    Article  Google Scholar 

  • Saad R, Koellner T, Margni M (2013) Land use impacts on freshwater regulation, erosion regulation and water purification: a spatial approach for a global scale. Int J Life Cycle Assess 18:1253–1264

    Article  Google Scholar 

  • Schmidt JH (2008) Development of LCIA characterisation factors for land use impacts on biodiversity. J Clean Prod 16:1929–1942

    Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319(5867):1238–1240

    Article  CAS  Google Scholar 

  • Soimakallio S, Mäkinen T, Ekholm T, Pahkala K, Mikkola H, Paappanen T (2009) Greenhouse gas balances of transportation biofuels, electricity and heat generation in Finland—dealing with the uncertainties. Energ Policy 37(1):80–90

    Article  Google Scholar 

  • Stanners D, Bosch P, Dom A, Gabrielsen P, Gee D, Martin J, Rickard L, Weber JL (2007) Frameworks for environmental assessment and indicators at the EEA. In: Hàk T, Moldan B, Dahl AL (eds) Sustainability indicators: a scientific assessment. Island, Washington, pp 127–144

    Google Scholar 

  • Statistics Finland (2011) Fuel classification 2011. Greenhouse gas emission intensities for greenhouse gas inventory. Statistics Finland

  • Steen-Olsen K, Weinzettel J, Cranston G, Ercin AE, Hertwich EG (2012) Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade. Environ Sci Technol 46:10883–10891

    Article  CAS  Google Scholar 

  • Wackernagel M, Schulz NB, Deumling D, Linares AC, Jenkins M, Kapos V, Monfreda C, Loh J, Myers N (2002) Tracking the ecological overshoot of the human economy. PNAS 99:9266–9271

    Article  CAS  Google Scholar 

  • Warner F, Althaus HJ, Künninger T, Richter K (2007) Life cycle inventories of wood as fuel and construction material. Ecoinvent report no. 9, data v2.0. Table 4.2. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Duebendorf, Switzerland

Download references

Acknowledgments

This study was carried out in the Finnish Forest Cluster project EffFibre, funded by the Finnish Funding Agency for Technology and Innovation (TEKES) and several private companies. We thank the financiers of the study, Elina Saarivuori from VTT Sustainability Assessment, the two anonymous peer reviewers for all the valuable comments that helped improve the quality of this study and Jari Hynynen from the Finnish Forest Research Institute METLA for access to the data on future forest management scenarios in Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuomas Helin.

Additional information

Responsible editor: Thomas Koellner

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 369 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helin, T., Holma, A. & Soimakallio, S. Is land use impact assessment in LCA applicable for forest biomass value chains? Findings from comparison of use of Scandinavian wood, agro-biomass and peat for energy. Int J Life Cycle Assess 19, 770–785 (2014). https://doi.org/10.1007/s11367-014-0706-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-014-0706-5

Keywords

Navigation