Skip to main content
Log in

Estimation of the carbon pool in soil and above-ground biomass within mangrove forests in Southeast Mexico using allometric equations

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

We report the results of carbon stored in soil and aboveground biomass from the most important area of mangroves in Mexico, with dominant vegetation of Red mangrove (Rhizophora mangle L.), Black mangrove (Avicennia germinans L.), white mangrove (Laguncularia racemosa Gaertn.) and button mangrove (Conocarpus erectus L.). We sampled soils with high fertility during the dry season in 2009 and 2010 at three sites on Atasta Peninsula, Campeche. We used allometric equations to estimate above ground biomass (AGB) of trees. AGB was higher in C. erectus (253.18±32.17 t·ha−1), lower in A. germinans (161.93±12.63 t·ha−1), and intermediate in R. mangle (181.70±16.58 t·ha−1) and L. racemosa (206.07±19.12 t·ha−1). Of the three studied sites, the highest absolute value for AGB was 279.72 t·ha−1 in button mangrove forest at any single site. Carbon stored in soil at the three sites ranged from 36.80±10.27 to 235.77±66.11 t·ha−1. The Tukey test (p <0.05) made for AGB was higher for black mangrove showed significant differences in soil carbon content between black mangrove and button mangrove. C. erectus had higher AGB compared with the other species. A. germinans trees had lower AGB because they grew in hypersaline environments, which reduced their development. C. erectus grew on higher ground where soils were richer in nutrients. AGB tended to be low in areas near the sea and increased with distance from the coast. A. germinans usually grew on recently deposited sediments. We assumed that all sites have the same potential to store carbon in soil, and then we found that there were no significant differences in carbon content between the three samples sites: all sites had potential to store carbon for long periods. Carbon storage at the three sampling sites in the state of Campeche, Mexico, was higher than that reported for other locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amarasinghe MD, Balasubramaniam S. 1992. Net primary productivity of two mangrove forest stands on the northwest coast of Sri Lanka. Hydrobiology, 247: 37–47.

    Article  Google Scholar 

  • Arreaga W. 2002. Carbon storage in forest with a management program in the natural reserve “Maya Peten”, Guatemala. Thesis M. Sc. CATIE, Turrialba, CR. p.86.

    Google Scholar 

  • Baccini A, Laporte N, Goetz S J, Sun M, Dong H. 2008. A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environmental Research Letters 3(4): 1–9.

    Article  Google Scholar 

  • Basuki TM, Van Laake PE, Skidmore AK, Hussin Y A. 2009. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forest. Forest Ecology and Management, 257: 1684–1694.

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C. 2006. The carbon balance of North American wetlands. Wetlands, 26: 889–916.

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Rie’ra B, Yamakura T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145: 87–99.

    Article  CAS  PubMed  Google Scholar 

  • Craft CB, Seneca ED, Broome SW. 1991. Ignition and kjeldahl digestion for estimating organic carbon and soils: Calibration with dry combustion. Estuaries, 14: 175–179.

    Article  CAS  Google Scholar 

  • Day JW, Conner WH, Ley LF, Day RH, Navarro AM. 1987. The productivity and composition of mangrove forests, Laguna de Terminos, Mexico. Aquatic Botany, 27: 267–284.

    Article  Google Scholar 

  • Fromard F, Puig H, Mougin E, Marty G, Betoulle JL, Cadamuro L. 1998. Structure above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia, 115:39–53.

    Article  Google Scholar 

  • Gonzalez M, Etchevers B, Hidalgo M. 2008. Carbono en suelos de ladera: factores que deben considerarse para determinar su cambio en el tiempo. Agrociencia, 42(7): 741–751.

    Google Scholar 

  • Hawes JE, Peres CA, Riley LB, Hess LL. 2012. Landscape-scale variation in structure and biomass of Amazonian seasonally flooded and unflooded forests. Forest Ecology and Management, 281: 163–176.

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of paleolimnology, 25:101–110.

    Article  Google Scholar 

  • Instituto Nacional de Ecología. 1997. Programa de Manejo del área de protección de flora y fauna “Laguna de Términos”; SEMARNAT. México. p.167.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 2001. Climate Change: The Scientific Basis. Cambridge, UK: Cambridge Univ. Press, p.881.

    Google Scholar 

  • Komiyama A, Ong JE, Poungparn S. 2008. Allometry, biomass, and productivity of mangrove forests: a review. Aquatic Botany, 89: 128–137.

    Article  Google Scholar 

  • Komiyama A, Poungparn S, Kato S. 2005. Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 21: 471–477.

    Article  Google Scholar 

  • Lugo A, Snedaker C. 1974. The ecology of mangroves. Annual Review of Ecology and Systematics, 5: 38–64.

    Article  Google Scholar 

  • Mall LP, Singh VP, Garge A. 1991. Study of biomass, litter fall, litter decomposition and soil respiration in monogeneric mangrove and mixed mangrove forest of Andaman Island. Tropical Ecology, 32: 144–152.

    Google Scholar 

  • Ordoñez JA, Masera O. 2001. Captura de carbono ante el cambio climático. Madera y Bosques, 7: 3–12.

    Google Scholar 

  • Ordoñez JA, Bernardus HJ, Masera O. 2001. Almacenamiento de carbono en un bosque de Pinus pseudostrobus en Nuevo San Juan Michoacan Madera y Bosques, 7(2): 27–47

    Google Scholar 

  • Rico-Gray V. 1982. Estudio de la vegetación de la zona costera inundable del noroeste de Campeche, México: Los petenes. Biótica, 7: 171–188.

    Google Scholar 

  • Twilley RW, Lugo AE, Patterson-Zucca C. 1986. Litter production and turnover in basin mangrove forests in Southwest Florida. Ecology, 67: 670–683.

    Article  Google Scholar 

  • Webb A. 2002. Pre-clearing soil carbon levels in Australia. National carbon accounting system technical report No.12. Australian greenhouse office, Canberra, 204.

    Google Scholar 

  • Whiting JG, Chanton JP. 2001. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus, 53B: 521–528.

    Article  CAS  Google Scholar 

  • Zanne AE, Lopez GG, Coomes DA, Llic J, Jansen SL, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J. 2009. Global wood density database. Dryad. Identifier: http://hdl.handle.net/10255/dryad.235. August 4th 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Jaime Guerra-Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerra-Santos, J.J., Cerón-Bretón, R.M., Cerón-Bretón, J.G. et al. Estimation of the carbon pool in soil and above-ground biomass within mangrove forests in Southeast Mexico using allometric equations. Journal of Forestry Research 25, 129–134 (2014). https://doi.org/10.1007/s11676-014-0437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-014-0437-2

Key words

Navigation