Skip to main content

Advertisement

Log in

The chemosensitivity of testicular germ cell tumors

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Although rare cancers overall, testicular germ cell tumors (TGCTs) are the most common type of cancer in young males below 40 years of age. Both subtypes of TGCTs, i.e., seminomas and non-seminomas, are highly curable and the majority of even metastatic patients may expect to be cured. These high cure rates are not due to the indolent nature of these cancers, but rather to their sensitivity to chemotherapy (and for seminomas to radiotherapy). The delineation of the cause of chemosensitivity at the molecular level is of paramount importance, because it may provide insights into the minority of TGCTs that are chemo-resistant and, thereby, provide opportunities for specific therapeutic interventions aimed at reverting them to chemosensitivity. In addition, delineation of the molecular basis of TGCT chemo-sensitivity may be informative for the cause of chemo-resistance of other more common types of cancer and, thus, may create new therapeutic leads. p53, a frequently mutated tumor suppressor in cancers in general, is not mutated in TGCTs, a fact that has implications for their chemo-sensitivity. Oct4, an embryonic transcription factor, is uniformly expressed in the seminoma and embryonic carcinoma components of non-seminomas, and its interplay with p53 may be important in the chemotherapy response of these tumors. This interplay, together with other features of TGCTs such as the gain of genetic material from the short arm of chromosome 12 and the association with disorders of testicular development, will be discussed in this paper and integrated in a unifying hypothesis that may explain their chemo-sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Di Pietro, E.G.E. de Vries, J.A. Gietema, D.C.J. Spierings, S. de Jong, Testicular germ cell tumours: the paradigm of chemo-sensitive solid tumours. Int. J. Biochem. Cell Biol. 37, 2437–2456 (2005)

    PubMed  Google Scholar 

  2. L.H.J. Looijenga, A.J.M. Gillis, H. Stoop, K. Biermann, J.W. Oosterhuis, Dissecting the molecular pathways of (testicular) germ cell tumour pathogenesis; from initiation to treatment-resistance. Int. J. Androl. 34, e234–e251 (2011)

    PubMed  CAS  Google Scholar 

  3. International Germ Cell Cancer Collaborative Group, International Germ Cell Consensus Classification: a prognostic factor-based staging system for metastatic germ cell cancers. J. Clin. Oncol. 15, 594–603 (1997)

    Google Scholar 

  4. F. Mayer, F. Honecker, L.H.J. Looijenga, C. Bokemeyer, Towards an understanding of the biological basis of response to cisplatin-based chemotherapy in germ-cell tumors. Ann. Oncol. 14, 825–832 (2003)

    PubMed  CAS  Google Scholar 

  5. H.Q. Peng, D. Hogg, D. Malkin, D. Bailey, B.L. Gallie, M. Balbul, M. Jewett, J. Buchanan, P.E. Goss, Mutations of the p53 gene do not occur in testis cancer. Cancer Res. 53, 3574–3578 (1993)

    PubMed  CAS  Google Scholar 

  6. L. Guillou, A. Estreicher, P. Chaubert, J. Hurlimann, A.M. Kurt, G. Metthez, R. Iggo, A.C. Gray, P. Jichlinski, H.-J. Leisinger, J. Benhattar, Germ cell tumors of the testis overexpress wild-type p53. Am. J. Pathol. 149, 1221–1228 (1996)

    PubMed Central  PubMed  CAS  Google Scholar 

  7. J.S. Kerley-Hamilton, A.M. Pike, N. Li, J. DiRenzo, M.J. Spinella, A p53-dominant transcriptional response to cisplatin in testicular germ cell tumor-derived human embryonal carcinoma. Oncogene 24, 6090–6100 (2005)

    PubMed  CAS  Google Scholar 

  8. S. Nag, J. Qin, K.S. Srivenugopal, M. Wang, The MDM2-p53 pathway revisited. J Biomed Res 27, 254–271 (2013)

    PubMed Central  PubMed  CAS  Google Scholar 

  9. C.R. Leemans, B.J.M. Braakhuis, R.H. Brakenhoff, The molecular biology of head and neck cancer. Nat. Rev. Cancer 11, 9–22 (2011)

    PubMed  CAS  Google Scholar 

  10. I.A. Voutsadakis, Ubiquitination and the ubiquitin-proteasome system in the pathogenesis and treatment of squamous head and neck carcinoma. Anticancer Res. 33, 3527–3541 (2013)

    PubMed  CAS  Google Scholar 

  11. A.V. Pinho, I. Rooman, F.X. Real, p53-dependent regulation of growth, epithelial-mesenchymal transition and stemness in normal pancreatic epithelial cells. Cell Cycle 10, 1312–1321 (2011)

    PubMed  CAS  Google Scholar 

  12. S. Carter, K.H. Vousden, A role for Numb in p53 stabilization. Genome Biol. 9, 221 (2008)

    PubMed Central  PubMed  Google Scholar 

  13. I.N. Colaluca, D. Tosoni, P. Nuciforo, F. Senic-Matuglia, V. Galimberti, G. Viale, S. Pece, P.P. Di Fiore, NUMB controls p53 tumour suppressor activity. Nature 451, 76–80 (2008)

    PubMed  CAS  Google Scholar 

  14. M. Oren, V. Rotter, Mutant p53 gain-of-function in cancer. Cold Spring Harb. Perspect. Biol. 2, a001107 (2010)

    PubMed Central  PubMed  Google Scholar 

  15. L.A. Carvajal, J.J. Manfredi, Another fork in the road- life or death decisions by the tumour suppressor p53. EMBO Rep. 14, 414–421 (2013)

    PubMed  CAS  Google Scholar 

  16. H. Solomon, S. Madar, V. Rotter, Mutant p53 gain of function is interwoven into the hallmarks of cancer. J. Pathol. 225, 475–478 (2011)

    PubMed  CAS  Google Scholar 

  17. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    PubMed  CAS  Google Scholar 

  18. P. Campomenosi, P. Monti, A. Aprile, A. Abbondandolo, T. Frebourg, B. Gold, T. Crook, A. Inga, M.A. Resnick, R. Iggo, G. Fronza, p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Oncogene 20, 3573–3579 (2001)

    PubMed  CAS  Google Scholar 

  19. S. Rowan, R.L. Ludwig, Y. Haupt, S. Bates, X. Lu, M. Oren, K.H. Vousden, Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. EMBO J. 15, 827–838 (1996)

    PubMed Central  PubMed  CAS  Google Scholar 

  20. G. Blandino, W. Deppert, P. Hainaut, A. Levine, G. Lozano, M. Olivier, V. Rotter, K. Wiman, M. Oren, Mutant p53 protein, master regulator of human malignancies: a report of the fifth Mutant p53 Workshop. Cell Death Differ. 19, 180–183 (2012)

    PubMed Central  PubMed  CAS  Google Scholar 

  21. J.G. Jackson, S.M. Post, G. Lozano, Regulation of tissue- and stimulus-specific cell fate decisions by p53 in vivo. J. Pathol. 223, 127–136 (2011)

    PubMed  CAS  Google Scholar 

  22. K. Bensaad, A. Tsuruta, M.A. Selak, M.N. Vidal, K. Nakano, R. Bartrons, E. Gottlieb, K.H. Vousden, TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006)

    PubMed  CAS  Google Scholar 

  23. F. Mayer, H. Stoop, G.L. Scheffer, R. Scheper, J.W. Oosterhuis, L.H.J. Looijenga, C. Bokemeyer, Molecular determinants of treatment response in human germ cell tumors. Clin. Cancer Res. 9, 767–773 (2003)

    PubMed  CAS  Google Scholar 

  24. D.C.J. Spierings, E.G.E. de Vries, A.J. Stel, N. te Rietstap, E. Vellenga, S. de Jong, Low p21Waf1/Cip1 protein level sensitizes testicular germ cell tumor cells to Fas-mediated apoptosis. Oncogene 23, 4862–4872 (2004)

    PubMed  CAS  Google Scholar 

  25. A. Di Pietro, R. Koster, W. Boersma-van Eck, W.A. Dam, N.H. Mulder, J.A. Gietema, E.G.E. de Vries, S. de Jong, Pro- and anti-apoptotic effects of p53 in cisplatin-treated human testicular cancer are cell context-dependent. Cell Cycle 11, 4552–4562 (2012)

    PubMed Central  PubMed  Google Scholar 

  26. M. Gutekunst, M. Oren, A. Weilbacher, M.A. Dengler, C. Markwardt, J. Thomale, W.E. Aulitzky, H. van der Kuip, p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS ONE 6, e19198 (2011)

    PubMed Central  PubMed  CAS  Google Scholar 

  27. C. Dai, W. Gu, p53 post-translational modification: deregulated in tumorigenesis. Trends Mol. Med. 16, 528–535 (2010)

    PubMed Central  PubMed  CAS  Google Scholar 

  28. M. Wade, Y.V. Wang, G.M. Wahl, The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol. 20, 299–309 (2010)

    PubMed Central  PubMed  CAS  Google Scholar 

  29. J.M. Stommel, G.M. Wahl, A new twist in the feedback loop. Stress-activated MDM2 destabilization is required for p53 activation. Cell Cycle 4, 413–417 (2005)

    Google Scholar 

  30. B. Li, Q. Cheng, Z. Li, J. Chen, p53 inactivation by MDM2 and MDMX negative feedback loops in testicular germ cell tumors. Cell Cycle 9, 1411–1420 (2010)

    PubMed Central  PubMed  CAS  Google Scholar 

  31. J.T. Lee, W. Gu, The multiple levels of regulation by p53 ubiquitination. Cell Death Differ. 17, 86–92 (2010)

    PubMed Central  PubMed  CAS  Google Scholar 

  32. J. Yuan, K. Luo, L. Zhang, J.C. Cheville, Z. Lou, USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140, 384–396 (2010)

    PubMed Central  PubMed  CAS  Google Scholar 

  33. M.B. Kastan, G.P. Zambetti, Parc-ing p53 in the cytoplasm. Cell 112, 1–5 (2003)

    PubMed  CAS  Google Scholar 

  34. A.Y. Nikolaev, M. Li, N. Puskas, J. Qin, W. Gu, Parc: a cytoplasmic anchor for p53. Cell 112, 29–40 (2003)

    PubMed  CAS  Google Scholar 

  35. R.P. Leng, Y. Lin, W. Ma, H. Wu, B. Lemmers, S. Chung, J.M. Parant, G. Lozano, R. Hakem, S. Benchimol, Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112, 779–791 (2003)

    PubMed  CAS  Google Scholar 

  36. D. Chen, N. Kon, M. Li, W. Zhang, J. Qin, W. Gu, ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121, 1071–1083 (2005)

    PubMed  CAS  Google Scholar 

  37. D. Dornan, I. Wertz, H. Shimizu, D. Arnott, G.D. Frantz, P. Dowd, K. O’Rourke, H. Koeppen, V.M. Dixit, The ubiquitin ligase COP is a critical negative regulator of p53. Nature 429, 86–92 (2004)

    PubMed  CAS  Google Scholar 

  38. S.V. Khoronenkova, G.L. Dianov, USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair. Nucleic Acids Res. 41, 1750–1756 (2013)

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Q. Zhong, W. Gao, F. Du, X. Wang, Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121, 1085–1095 (2005)

    PubMed  CAS  Google Scholar 

  40. A. Shmueli, M. Oren, Life, death, and ubiquitin: taming the Mule. Cell 121, 963–965 (2005)

    PubMed  CAS  Google Scholar 

  41. N. Taira, K. Nihira, T. Yamaguchi, Y. Miki, K. Yoshida, DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol. Cell 25, 725–738 (2007)

    PubMed  CAS  Google Scholar 

  42. C. Rinaldo, A. Prodosmo, F. Mancini, S. Iacovelli, A. Sacchi, F. Moretti, S. Soddu, MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol. Cell 25, 739–750 (2007)

    PubMed  CAS  Google Scholar 

  43. S.M. Sykes, H.S. Mellert, M.A. Holbert, K. Li, R. Marmorstein, W.S. Lane, S.B. McMahon, Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol. Cell 24, 841–851 (2006)

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Y. Tang, J. Luo, W. Zhang, W. Gu, Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 24, 827–839 (2006)

    PubMed  CAS  Google Scholar 

  45. S.M. Sykes, T.J. Stanek, A. Frank, M.E. Murphy, S.B. McMahon, Acetylation of the DNA binding domain regulates transcription-independent apoptosis by p53. J. Biol. Chem. 284, 20197–20205 (2009)

    PubMed Central  PubMed  CAS  Google Scholar 

  46. C.D. Knights, J. Di Catania, S. Giovanni, S. Muratoglu, R. Perez, A. Swartzbeck, A.A. Quong, X. Zhang, T. Beerman, R.G. Pestell, M.L. Avantaggiati, Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J. Cell Biol. 173, 533–544 (2006)

    PubMed Central  PubMed  CAS  Google Scholar 

  47. J. Luo, A.Y. Nikolaev, S. Imai, D. Chen, F. Su, A. Shiloh, L. Guarente, W. Gu, Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137–148 (2001)

    PubMed  CAS  Google Scholar 

  48. J. Yi, J. Luo, SIRT1 and p53, effect on cancer, senescence and beyond. Biochim. Biophys. Acta 2010, 1684–1689 (1804)

    Google Scholar 

  49. M. Han, E. Song, Y. Guo, X. Ou, C. Mantel, H.E. Broxmeyer, SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2, 241–251 (2008)

    PubMed Central  PubMed  CAS  Google Scholar 

  50. M. Miettinen, I. Virtanen, A. Talerman, Intermediate filament proteins in human testis and testicular germ-cell tumors. Am. J. Pathol. 120, 402–410 (1985)

    PubMed Central  PubMed  CAS  Google Scholar 

  51. M.A. Calzado, L. De La Vega, E. Munoz, M.L. Schmitz, From top to bottom. The two faces of HIPK2 for regulation of the hypoxic response. Cell Cycle 8, 1659–1664 (2009)

    PubMed  CAS  Google Scholar 

  52. A.S. Coutts, L. Weston, N.B. La Thangue, Actin nucleation by a transcription co-factor that links cytoskeletal events with the p53 response. Cell Cycle 9, 1511–1515 (2010)

    PubMed  Google Scholar 

  53. N. Shikama, C.-W. Lee, S. France, L. Delavaine, J. Lyon, M. Krstic-Demonacos, N.B. La Thangue, A novel cofactor for p300 that regulates the p53 response. Mol. Cell 4, 365–376 (1999)

    PubMed  CAS  Google Scholar 

  54. A. Sullivan, X. Lu, ASPP: a new family of oncogenes and tumour suppressor genes. Br. J. Cancer 96, 196–200 (2007)

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Y. Samuels-Lev, D.J. O’Connor, D. Bergamaschi, G. Trigiante, J.-K. Hsieh, S. Zhong, I. Campargue, L. Naumovski, T. Crook, X. Lu, ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell 8, 781–794 (2001)

    PubMed  CAS  Google Scholar 

  56. S. Gillotin, X. Lu, The ASPP proteins complex and cooperate with p300 to modulate the transcriptional activity of p53. FEBS Lett. 585, 1778–1782 (2011)

    PubMed  CAS  Google Scholar 

  57. L. Yuan, C. Tian, H. Wang, S. Song, D. Li, G. Xing, Y. Yin, F. He, L. Zhang, Apak competes with p53 for direct binding to intron 1 of p53AIP1 to regulate apoptosis. EMBO Rep. 13, 363–370 (2012)

    PubMed Central  PubMed  CAS  Google Scholar 

  58. C. Tian, G. Xing, P. Xie, K. Lu, J. Nie, J. Wang, L. Li, M. Gao, L. Zhang, F. He, KRAB-type zinc-finger protein Apak specifically regulates p53-dependent apoptosis. Nat. Cell Biol. 11, 580–591 (2009)

    PubMed  CAS  Google Scholar 

  59. L. Cheng, M.-T. Sung, P. Cossu-Rocca, T.D. Jones, G.T. MacLennan, J. De Jong, A. Lopez-Beltran, R. Montironi, L.H.J. Looijenga, OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. J. Pathol. 211, 1–9 (2007)

    PubMed  CAS  Google Scholar 

  60. S. Stefanovic, M. Pucéat, L’octamanie continue. Le double jeu de OCT4. Med. Sci 26, 411–416 (2010)

    Google Scholar 

  61. J. Kehler, E. Tolkunova, B. Koschorz, M. Pesce, L. Gentile, M. Boiani, Oct4 is required for primordial germ cell survival. EMBO Rep. 5, 1078–1083 (2004)

    PubMed Central  PubMed  CAS  Google Scholar 

  62. S. Stefanovic, N. Abboud, S. Désilets, D. Nury, C. Cowan, M. Pucéat, Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate. J. Cell Biol. 186, 665–673 (2009)

    PubMed Central  PubMed  CAS  Google Scholar 

  63. Y.H. Huang, C.C. Chin, H.N. Ho, C.K. Chou, C.N. Shen, H.C. Kuo, Y.C. Wu, Y.C. Hung, C.C. Chang, T.Y. Ling, Pluripotency of mouse spermatogonial stem cells maintened by IGF-1-dependent pathway. FASEB J. 23, 2076–2087 (2009)

    PubMed  CAS  Google Scholar 

  64. Y. Lin, Y. Yang, W. Li, Q. Chen, J. Li, X. Pan, L. Zhou, C. Liu, C. Chen, J. He, H. Cao, H. Yao, L. Zheng, X. Xu, Z. Xia, J. Ren, L. Xiao, L. Li, B. Shen, H. Zhou, Y.-J. Wang, Reciprocal regulation of Akt and Oct4 promotes the self-renewal and survival of embryonal carcinoma cells. Mol. Cell 48, 627–640 (2012)

    PubMed Central  PubMed  CAS  Google Scholar 

  65. P. Deb-Rinker, D. Ly, A. Jezierski, M. Sikorska, P.R. Walker, Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J. Biol. Chem. 280, 6257–6260 (2005)

    PubMed  CAS  Google Scholar 

  66. Y.C. Wu, T.Y. Ling, S.H. Lu, H.C. Kuo, H.N. Ho, S.D. Yeh, C.N. Shen, Y.H. Huang, Chemotherapeutic sensitivity of testicular germ cell tumors under hypoxic conditions is negatively regulated by SENP1-controlled sumoylation of OCT4. Cancer Res. 72, 4963–4973 (2012)

    PubMed  CAS  Google Scholar 

  67. T.D. Jones, T.M. Ulbright, J.N. Eble, L.A. Baldridge, L. Cheng, OCT4 staining in testicular tumors: a sensitive and specific marker for seminoma and embryonal carcinoma. Am. J. Surg. Pathol. 28, 935–940 (2004)

    PubMed  Google Scholar 

  68. G. Pan, J.A. Thomson, Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 17, 42–49 (2007)

    PubMed  CAS  Google Scholar 

  69. L. Mándoky, B. Szende, L. Géczi, I. Bodrogi, M. Kásler, M. Bak, Apoptosis regulation and spontaneous apoptosis index of testicular germ cell tumors are associated with differentiation and resistance to systemic treatment. Anticancer Res. 28, 1641–1650 (2008)

    PubMed  Google Scholar 

  70. D. Juric, S. Sale, R.A. Hromas, R. Yu, Y. Wang, G.E. Duran, R. Tibshirani, L.H. Einhorn, B.I. Sikic, Gene expression profiling differentiates germ cell tumors from other cancers and defines subtype-specific signatures. Proc. Natl. Acad. Sci. U. S. A. 102, 17763–17768 (2005)

    PubMed Central  PubMed  CAS  Google Scholar 

  71. M.W. Datta, E. Macri, S. Signoretti, A.A. Renshaw, M. Loda, Transition from in situ to invasive testicular germ cell neoplasia is associated with the loss of p21 and gain of mdm-2 expression. Mod. Pathol. 14, 437–442 (2001)

    PubMed  CAS  Google Scholar 

  72. R. Koster, A. di Pietro, H. Timmer-Bosscha, J.H. Gibcus, A. van den Berg, A.J. Suurmeijer, R. Bischoff, J.A. Gietema, S. de Jong, Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J. Clin. Invest. 120, 3594–3605 (2010)

    PubMed Central  PubMed  CAS  Google Scholar 

  73. T. Mueller, L.P. Mueller, J. Luetzkendorf, W. Voigt, H. Simon, H.J. Schmoll, Loss of Oct-3/4 expression in embryonal carcinoma cells is associated with induction of cisplatin resistance. Tumour Biol. 27, 71–83 (2006)

    PubMed  CAS  Google Scholar 

  74. A. Singh, J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751 (2010)

    PubMed Central  PubMed  CAS  Google Scholar 

  75. I.A. Voutsadakis, Molecular predictors of gemcitabine response in pancreatic cancer. World J. Gastrointest. Oncol. 3, 153–164 (2011)

    PubMed Central  PubMed  Google Scholar 

  76. L.-L. Tsai, C.-C. Yu, Y.-C. Chang, C.-H. Yu, M.-Y. Chou, Markedly increased Oct4 and Nanog expression correlates with cisplatin resistance in oral squamous cell carcinoma. J. Oral Pathol. Med. 40, 621–628 (2011)

    PubMed  CAS  Google Scholar 

  77. N.S. Hillbertz, J.M. Hirsch, J. Jalouli, M.M. Jalouli, L. Sand, Viral and molecular aspects of oral cancer. Anticancer Res. 32, 4201–4212 (2012)

    PubMed  CAS  Google Scholar 

  78. J. Houldsworth, H. Xiao, V.V.V.S. Murty, W. Chen, B. Ray, V.E. Reuter, G.J. Bosl, R.S.K. Chaganti, Human male germ cell tumor resistance to cisplatin is linked to TP53 gene mutation. Oncogene 16, 2345–2349 (1998)

    PubMed  CAS  Google Scholar 

  79. T. Mueller, L.P. Mueller, H.-J. Holzhausen, R. Witthuhn, P. Albers, H.J. Schmoll, Histological evidence for the existence of germ cell tumor cells showing embryonal carcinoma morphology but lacking OCT4 expression and cisplatin sensitivity. Histochem. Cell Biol. 134, 197–204 (2010)

    PubMed  CAS  Google Scholar 

  80. K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)

    PubMed  CAS  Google Scholar 

  81. N. Tapia, H.R. Scholer, p53 connects tumorigenesis and reprogramming to pluripotency. J. Exp. Med. 207, 2045–2048 (2010)

    PubMed Central  PubMed  CAS  Google Scholar 

  82. R.R. Chivukula, J.T. Mendell, Abate and switch: miR-145 in stem cell differentiation. Cell 137, 606–608 (2009)

    PubMed  CAS  Google Scholar 

  83. P. Svoboda, M. Flemr, The role of miRNAs and endogenous siRNAs in maternal-to-zygotic reprogramming and the establishment of pluripotency. EMBO Rep. 11, 590–597 (2010)

    PubMed Central  PubMed  CAS  Google Scholar 

  84. L. Liu, J. Lian, H. Zhang, H. Tian, M. Liang, M. Yin, F. Sun, Micro-RNA-302a sensitizes testicular embryonal carcinoma cells to cisplatin-induced cell death. J. Cell. Physiol. 228, 2294–2304 (2013)

    PubMed  CAS  Google Scholar 

  85. N. Xu, T. Papagiannakopoulos, G. Pan, J.A. Thomson, K.S. Kosik, MicroRNA-145 regulates OCT4, SOX2 and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137, 647–658 (2009)

    PubMed  CAS  Google Scholar 

  86. S.O. Suh, Y. Chen, M.S. Zaman, H. Hirata, S. Yamamura, V. Shahryari, J. Liu, Z.L. Tabatabai, S. Kakar, G. Deng, Y. Tanaka, R. Dahiya, MicroRNA-145 is regulated by methylation and p53 gene mutation in prostate cancer. Carcinogenesis 32, 772–778 (2011)

    PubMed Central  PubMed  CAS  Google Scholar 

  87. N. Riggi, M.-L. Suvà, C. De Vito, P. Provero, J.-C. Stehle, K. Baumer, L. Cironi, M. Janiszewska, T. Petricevic, D. Suvà, S. Tercier, J.-M. Joseph, L. Guillou, I. Stamenkovic, EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. Genes Dev. 24, 916–932 (2010)

    PubMed Central  PubMed  CAS  Google Scholar 

  88. C. Krausz, L.H.J. Looijenga, Genetic aspects of testicular germ cell tumors. Cell Cycle 7, 3519–3524 (2008)

    PubMed  CAS  Google Scholar 

  89. F. Anokye-Danso, C.M. Trivedi, D. Juhr, M. Gupta, Z. Cui, Y. Tian, Y. Zhang, W. Yang, P.J. Gruber, J.A. Epstein, E.E. Morrisey, Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8, 376–388 (2011)

    PubMed Central  PubMed  CAS  Google Scholar 

  90. S.-L. Lin, Concise review: deciphering the mechanism behind induced pluripotent stem cell generation. Stem Cells 29, 1645–1649 (2011)

    PubMed Central  PubMed  Google Scholar 

  91. D.K. Ma, J.U. Guo, G. Ming, H. Song, DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle 8, 1526–1531 (2009)

    PubMed Central  PubMed  CAS  Google Scholar 

  92. P.M. Voorhoeve, C. le Sage, M. Schrier, A.J.M. Gillis, H. Stoop, R. Nagel, Y.-P. Liu, J. van Duijse, J. Drost, A. Griekspoor, E. Zlotorynski, N. Yabuta, G. De Vita, H. Nojima, L.H.J. Looijenga, R. Agami, A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006)

    PubMed  CAS  Google Scholar 

  93. M.L. Wang, S.H. Chiou, C.W. Wu, Targeting cancer stem cells: emerging role of Nanog transcription factor. Oncol. Targets Ther. 6, 1207–1220 (2013)

    CAS  Google Scholar 

  94. P. Navarro, P. Avner, When X-inactivation meets pluripotency: an intimate rendezvous. FEBS Lett. 583, 1721–1727 (2009)

    PubMed  CAS  Google Scholar 

  95. A.H. Hart, L. Hartley, K. Parker, M. Ibrahim, L.H.J. Looijenga, M. Pauchnik, C.W. Chow, L. Robb, The pluripotency homeobox gene NANOG is expressed in human germ cell tumors. Cancer 104, 2092–2098 (2005)

    PubMed  CAS  Google Scholar 

  96. P.E. Szabo, K. Hubner, H. Scholer, J.R. Mann, Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech. Dev. 115, 157–160 (2002)

    PubMed  CAS  Google Scholar 

  97. D. Gilbert, E. Rapley, J. Shipley, Testicular germ cell tumours: predisposition genes and the male germ cell niche. Nat. Rev. Cancer 11, 278–288 (2011)

    PubMed  CAS  Google Scholar 

  98. M. Kucia, R. Reca, K. Miekus, J. Wanzeck, W. Wojakowski, A. Janowska-Wieczorek, J. Ratajczak, M.Z. Ratajczak, Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23, 879–894 (2005)

    PubMed  CAS  Google Scholar 

  99. M.C. Mostert, A.J.M.H. Verkerk, M. van de Pol, J. Heighway, P. Marynen, C. Rosenberg, A. Geurts van Kessel, J. van Echten, B. de Jong, J.W. Oosterhuis, L.H.J. Looijenga, Identification of the critical region of 12p over-representation in testicular germ cell tumors of adolescents and adults. Oncogene 16, 2617–2627 (1998)

    PubMed  CAS  Google Scholar 

  100. S. Rodriguez, O. Jafer, H. Goker, B.M. Summersgill, G. Zafarana, A.J.M. Gillis, R.J.H.L.M. van Gurp, J.W. Oosterhuis, Y.-J. Lu, R. Huddart, C.S. Cooper, J. Clark, L.H.J. Looijenga, J.M. Shipley, Expression profile of genes from 12p in testicular germ cell tumors of adolescents and adults associated with i(12p) and amplification at 12p11.2-p12.1. Oncogene 22, 1880–1891 (2003)

    PubMed  CAS  Google Scholar 

  101. J.E. Korkola, J. Houldsworth, R.S.V. Chadalavada, A.B.. Olshen, D. Dobrzynski, V.E. Reuter, G.J. Bosl, R.S.K. Chaganti, Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res. 66, 820–827 (2006)

    Google Scholar 

  102. K. Tanaka, S. Okamoto, Y. Ishikawa, H. Tamura, T. Hara, DDX1 is required for testicular tumorigenesis, partially through the transcriptional activation of 12p stem cell genes. Oncogene 28, 2142–2151 (2009)

    PubMed  CAS  Google Scholar 

  103. C.J. Giuliano, J.S. Kerley-Hamilton, T. Bee, S.J. Freemantle, R. Manickaratnam, E. Dmitrovsky, M.J. Spinella, Retinoic acid represses a cassette of candidate pluripotency chromosome 12p genes during induced loss of human embryonal carcinoma tumorigenicity. Biochim. Biophys. Acta 1731, 48–56 (2005)

    PubMed  CAS  Google Scholar 

  104. E. Rajpert-De Meyts, R. Hanstein, N. Jorgensen, N. Graem, P.H. Vogt, N.E. Skakkebaek, Developmental expression of POU5F1 (OCT-3/4) in normal and dysgenetic human gonads. Hum. Reprod. 19, 1338–1344 (2004)

    PubMed  CAS  Google Scholar 

  105. M. Cools, S.L.S. Drop, K.P. Wolfenbuttel, J.W. Oosterhuis, L.H.J. Looijenga, Germ cell tumors in the intersex gonad: old paths, new directions, moving frontiers. Endocr. Rev. 27, 468–484 (2006)

    PubMed  CAS  Google Scholar 

  106. K. McClelland, J. Bowles, P. Koopman, Male sex determination: insights into molecular mechanisms. Asian J. Androl. 14, 164–171 (2012)

    PubMed Central  PubMed  CAS  Google Scholar 

  107. J.S. Fisher, Environmental anti-androgens and male reproductive health: focus on phthalates and testicular dysgenesis syndrome. Reproduction 127, 305–315 (2004)

    PubMed  CAS  Google Scholar 

  108. F. Orso, E. Cottone, M.D. Hasleton, Activator protein-2gamma (AP-2gamma) expression is specifically induced by oestrogens through binding of the oestrogen receptor to a canonical element within the5′-untranslated region. Biochem. J. 377, 429–438 (2004)

    PubMed Central  PubMed  CAS  Google Scholar 

  109. D. Eckert, S. Buhl, S. Weber, R. Jӓger, H. Schorle, The AP-2 family of transcription factors. Genome Biol. 6, 246 (2005)

    PubMed Central  PubMed  Google Scholar 

  110. S. Schӓfer, J. Anschlag, D. Nettersheim, N. Haas, L. Pawig, H. Schorle, The role of BLIMP1 and its putative downstream target TFAP2C in germ cell development and germ cell tumours. Int. J. Androl. 34, e152–e159 (2011)

    Google Scholar 

  111. C.E. Hoei-Hansen, J.E. Nielsen, K. Almstrup, S.B. Sonne, N. Graem, N.E. Skakkebaek, H. Leffers, E. Rajpert-De Meyts, Transcription Factor AP-2γ is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin. Cancer Res. 10, 8521–8530 (2004)

    PubMed  CAS  Google Scholar 

  112. A. Jørgensen, J.E. Nielsen, M. Blomberg Jensen, N. Graem, E. Rajpert-De Meyts, Analysis of meiosis regulators in human gonads: a sexually dimorphic spatio-temporal expression pattern suggests involvement of DMRT1 in meiotic entry. Mol. Hum. Reprod. 18, 523–534 (2012)

    PubMed  Google Scholar 

  113. A. Jørgensen, J.E. Nielsen, K. Almstrup, B.G. Toft, B.L. Petersen, E. Rajpert-De Meyts, Dysregulation of the mitosis-meiosis switch in testicular carcinoma in situ. J. Pathol. 229, 588–598 (2013)

    PubMed  Google Scholar 

  114. S.M. Kraggerud, C.E. Hoei-Hansen, S. Alagaratnam, R.I. Skotheim, V.M. Abeler, E. Rajpert-De Meyts, R.A. Lothe, Molecular characteristics of malignant ovarian germ cell tumors and comparison with testicular counterparts: implications for pathogenesis. Endocr. Rev. 34, 339–376 (2013)

    PubMed Central  PubMed  CAS  Google Scholar 

  115. P. Arnaud, Genomic imprinting in germ cells: imprints are under control. Reproduction 140, 411–423 (2010)

    PubMed  CAS  Google Scholar 

  116. L. Mork, B. Capel, Oestrogen shuts the door on SOX9. BMC Biol. 8, 110 (2010)

    PubMed Central  PubMed  Google Scholar 

  117. P. Savage, J. Stebbing, M. Bower, T. Crook, Why does cytotoxic chemotherapy cure only some cancers? Nat. Clin. Pract. Oncol. 6, 43–52 (2009)

    PubMed  CAS  Google Scholar 

  118. J. Bartkova, C.J. Bakkenist, E. Rajpert-De Meyts, N.E. Skakkebaek, M. Sehested, J. Lukas, M.B. Kastan, J. Bartek, ATM activation in normal human tissues and testicular cancer. Cell Cycle 4, 838–845 (2005)

    PubMed  CAS  Google Scholar 

  119. F. Cavallo, D.R. Feldman, M. Barchi, Revisiting DNA damage repair, p53-mediated apoptosis and cisplatin sensitivity in germ cell tumors. Int. J. Dev. Biol. 57, 273–280 (2013)

    PubMed  CAS  Google Scholar 

  120. B. Köberle, J.R. Masters, J.A. Hartley, R.D. Wood, Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours. Curr. Biol. 9, 273–276 (1999)

    PubMed  Google Scholar 

  121. C. Welsh, R. Day, C. McGurk, J.R.W. Masters, R.D. Wood, B. Köberle, Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines. Int. J. Cancer 110, 352–361 (2004)

    PubMed  CAS  Google Scholar 

  122. B. Köberle, W. Brenner, A. Albers, S. Usanova, J.W. Thüroff, B. Kaina, ERCC1 and XPF expression in human testicular germ cell tumors. Oncol. Rep. 23, 223–227 (2010)

    PubMed  Google Scholar 

  123. J. Mendoza, J. Martínez, C. Hernández, D. Pérez-Montiel, C. Castro, E. Fabián-Morales, M. Santibáñez, R. González-Barrios, J. Díaz-Chávez, M.A. Andonegui, N. Reynoso, L.F. Oñate, M.A. Jiménez, M. Núñez, R. Dyer, L.A. Herrera, Association between ERCC1 and XPA expression and polymorphisms and the response to cisplatin in testicular germ cell tumours. Br. J. Cancer 109, 68–75 (2013)

    PubMed Central  PubMed  CAS  Google Scholar 

  124. S. Bhana, A. Hewer, D.H. Phillips, D.R. Lloyd, p53-dependent global nucleoside excision repair of cisplatin-induced intrastand cross links in human cells. Mutagenesis 23, 131–136 (2008)

    PubMed  CAS  Google Scholar 

  125. F. Cavallo, G. Graziani, C. Antinozzi, D.R. Feldman, J. Houldsworth, G.J. Bosl, R.S. Chaganti, M.E. Moynahan, M. Jasin, M. Barchi, Reduced proficiency in homologous recombination underlies the high sensitivity of embryonal carcinoma testicular germ cell tumors to Cisplatin and poly (adp-ribose) polymerase inhibition. PLoS One 7, e51563 (2012)

    PubMed Central  PubMed  CAS  Google Scholar 

  126. K.A. Olaussen, A. Dunant, P. Fouret, E. Brambilla, F. André, V. Haddad, E. Taranchon, M. Filipits, J.-P. Pignon, T. Tursz, T. Le Chevalier, J.-C. Soria, DNA repair by ERCC1 in Non-Small-Cell Lung Cancer and cisplatin-based adjuvant chemotherapy. New Engl. J. Med. 355, 983–991 (2006)

    PubMed  CAS  Google Scholar 

  127. E. Ribeiro, M. Ganzinelli, D. Andreis, R. Bertoni, R. Giardini, S.B. Fox, M. Broggini, A. Bottini, V. Zanoni, L. Bazzola, C. Foroni, D. Generali, G. Damia, Triple negative breast cancers have a reduced expression of DNA repair genes. PLoS ONE 8, e66243 (2013)

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Z. Zheng, T. Chen, X. Li, E. Haura, A. Sharma, G. Bepler, DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. New Engl. J. Med. 356, 800–808 (2007)

    PubMed  CAS  Google Scholar 

  129. R. Vélez-Cruz, D.G. Johnson, E2F1 and p53 transcription factors as accessory factors for nucleotide excision repair. Int. J. Mol. Sci. 13, 13554–13568 (2012)

    PubMed Central  PubMed  Google Scholar 

  130. S.R. Martens-de Kemp, S.U. Dalm, F.M.J. Wijnolts, A. Brink, R.J. Honeywell, G.J. Peters, B.J.M. Braakhuis, R.H. Brakenhoff, DNA-bound platinum is the major determinant of cisplatin sensitivity in head and necksquamous carcinoma cells. PLoS ONE 8, e61555 (2013)

    PubMed Central  PubMed  CAS  Google Scholar 

  131. L. Friboulet, K.A. Olaussen, J.P. Pignon, F.A. Shepherd, M.S. Tsao, S. Graziano, R. Kratzke, J.Y. Douillard, L. Seymour, R. Pirker, M. Filipits, F. André, E. Solary, F. Ponsonnailles, A. Robin, A. Stoclin, N. Dorvault, F. Commo, J. Adam, E. Vanhecke, P. Saulnier, J. Thomale, T. Le Chevalier, A. Dunant, V. Rousseau, G. Le Teuff, E. Brambilla, J.C. Soria, ERCC1 isoform expression and DNA repair in non-small-cell lung cancer. New Engl. J. Med. 368, 1101–1110 (2013)

    PubMed  CAS  Google Scholar 

  132. M.J.P. Welters, B.J.M. Braakhuis, A.J. Jacobs-Bergmans, A. Kegel, R.A. Baan, W.J.F. van der Vijgh, A.M.J. Fichtinger-Schepman, The potential of platinum-DNA adduct determination in ex vivo treated tumor fragments for the prediction of sensitivity to cisplatin chemotherapy. Ann. Oncol. 10, 97–103 (1999)

    PubMed  CAS  Google Scholar 

  133. X. Chen, L.J. Ko, L. Jayaraman, C. Prives, p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10, 2438–2451 (1996)

    PubMed  CAS  Google Scholar 

  134. J. Fan, J.R. Bertino, Modulation of cisplatinum cytotoxicity byp53: effect of p53-mediated apoptosis and DNA repair. Mol. Pharmacol. 56, 966–972 (1999)

    PubMed  CAS  Google Scholar 

  135. J.C. Huang, D.B. Zamble, J.T. Reardon, S.J. Lippard, A. Sancar, HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc. Natl. Acad. Sci. U. S. A. 91, 10394–10398 (1994)

    PubMed Central  PubMed  CAS  Google Scholar 

  136. L. Jayaraman, N. Chandra Moorthy, K.G.K. Murthy, J.L. Manley, M. Bustin, C. Prives, High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev. 12, 462–472 (1998)

    PubMed Central  PubMed  CAS  Google Scholar 

  137. Q. He, C.H. Liang, S.J. Lippard, Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc. Natl. Acad. Sci. U. S. A. 97, 5768–5772 (2000)

    PubMed Central  PubMed  CAS  Google Scholar 

  138. G. Nagatani, M. Nomoto, H. Takano, T. Ise, K. Kato, T. Imamura, H. Izumi, K. Makishima, K. Kohno, Transcriptional activation of the human HMG1 gene in cisplatin-resistant human cancer cells. Cancer Res. 61, 1592–1597 (2001)

    PubMed  CAS  Google Scholar 

  139. S.S. Lange, K.M. Vasquez, HMGB1: The jack-of-all-trades protein is a master DNA repair mechanic. Mol. Carcinog. 48, 571–580 (2009)

    PubMed Central  PubMed  CAS  Google Scholar 

  140. K.M. Livesey, R. Kang, P. Vernon, W. Buchser, P. Loughran, S.C. Watkins, L. Zhang, J.J. Manfredi, H.J. Zeh 3rd, L. Li, M.T. Lotze, D. Tang, p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 72, 1996–2005 (2012)

    PubMed Central  PubMed  CAS  Google Scholar 

  141. K.M. Livesey, R. Kang, H.J. Zeh III, M.T. Lotze, D. Tang, Direct molecular interactions between HMGB1 and TP53 in colorectal cancer. Autophagy 8, 846–848 (2012)

    PubMed Central  PubMed  CAS  Google Scholar 

  142. D. Tang, R. Kang, H.J. Zeh III, M.T. Lotze, High-Mobility Group Box 1, oxidative stress, and disease. Antioxid. Redox Signal 14, 1315–1335 (2011)

    PubMed Central  PubMed  CAS  Google Scholar 

  143. S. Park, S.J. Lippard, Binding interaction of HMGB4 with cisplatin-modified DNA. Biochemistry 51, 6728–6737 (2012)

    PubMed Central  PubMed  CAS  Google Scholar 

  144. R. Franco, F. Esposito, M. Fedele, G. Liguori, G.M. Pierantoni, G. Botti, D. Tramontano, A. Fusco, P. Chieffi, Detection of high-mobility group proteins A1 and A2 represents a valid diagnostic marker in post-pubertal testicular germ cell tumours. J. Pathol. 214, 58–64 (2008)

    PubMed  CAS  Google Scholar 

  145. G. D’Orazi, C. Rinaldo, S. Soddu, Updates on HIPK2: a resourceful oncosuppressor for clearing cancer. J. Exp. Clin. Cancer Res. 31, 63 (2012)

    PubMed Central  PubMed  Google Scholar 

  146. L.M.S. Resar, The High Mobility Group A1 gene: transforming inflammatory signals into cancer. Cancer Res. 70, 436–439 (2010)

    PubMed Central  PubMed  CAS  Google Scholar 

  147. I. Ben-Porath, M.W. Thomson, V.J. Carey, R. Ge, G.W. Bell, A. Regev, R.A. Weinberg, An embryonicstem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499–507 (2008)

    PubMed Central  PubMed  CAS  Google Scholar 

  148. F. Honecker, H. Wermann, F. Mayer, A.J.M. Gillis, H. Stoop, R.J.L.M. van Gurp, K. Oechsle, E. Steyerberg, J.T. Hartmann, W.N.M. Dinjens, J.W. Oosterhuis, C. Bokemeyer, L.H.J. Looijenga, Microsatellite instability, Mismatch Repair deficiency, and BRAF mutation in treatment-resistant germ cell tumors. J. Clin. Oncol. 27, 2129–2136 (2009)

    PubMed  CAS  Google Scholar 

  149. C.M. Ribic, D.J. Sergent, M.J. Moore, S.N. Thibodeau, A.J. French, R.M. Goldberg, S.R. Hamilton, P. Laurent-Puig, R. Gryfe, L.E. Shepherd, D. Tu, M. Redston, S. Gallinger, Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. New Engl. J. Med. 349, 247–257 (2003)

    PubMed Central  PubMed  CAS  Google Scholar 

  150. F.A. Sinicrope, M.R. Mahoney, T.C. Smyrk, S.N. Thibodeau, R.S. Warren, M.M. Bertagnolli, G.D. Nelson, R.M. Goldberg, D.J. Sargent, S.R. Alberts, Prognostic impact of deficient DNA Mismatch Repair in patients with stage III colon cancer from a randomized trial of FOLFOX-based adjuvant chemotherapy. J. Clin. Oncol. 31, 3664–3672 (2013)

    PubMed  CAS  Google Scholar 

  151. D. Fink, S. Nebel, S. Aebi, H. Zheng, B. Cenni, A. Nehmé, R.D. Christen, S.B. Howell, The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 56, 4881–4886 (1996)

    PubMed  CAS  Google Scholar 

  152. P.B. Chapman, A. Hauschild, C. Robert, J.B. Haanen, P. Ascierto, J. Larkin, R. Dummer, C. Garbe, A. Testori, M. Maio, D. Hogg, P. Lorigan, C. Lebbe, T. Jouary, D. Schadendorf, A. Ribas, S.J. O’Day, J.A. Sosman, J.M. Kirkwood, A.M. Eggermont, B. Dreno, K. Nolop, J. Li, B. Nelson, J. Hou, R.J. Lee, K.T. Flaherty, G.A. McArthur, BRIM-3 Study Group: improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011)

    PubMed Central  PubMed  CAS  Google Scholar 

  153. S.P. Wang, W.L. Wang, Y.L. Chang, C.T. Wu, Y.C. Chao, S.H. Kao, A. Yuan, C.W. Lin, S.C. Yang, W.K. Chan, K.C. Li, T.M. Hong, P.C. Yang, p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat. Cell Biol. 11, 694–704 (2009)

    PubMed  CAS  Google Scholar 

  154. R. Li, J. Liang, S. Ni, T. Zhou, X. Qing, H. Li, W. He, J. Chen, F. Li, Q. Zhuang, B. Qin, J. Xu, W. Li, J. Yang, Y. Gan, D. Qin, S. Feng, H. Song, D. Yang, B. Zhang, L. Zeng, L. Lai, M.A. Esteban, D. Pei, A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51–63 (2010)

    PubMed  CAS  Google Scholar 

  155. S.H. Chiou, M.L. Wang, Y.T. Chou, C.J. Chen, C.F. Hong, W.J. Hsieh, H.T. Chang, Y.S. Chen, T.W. Lin, H.S. Hsu, C.W. Wu, Coexpression of oct4 and nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 70, 10433–10444 (2010)

    PubMed  CAS  Google Scholar 

  156. M.K. Siu, E.S. Wong, D.S. Kong, H.Y. Chan, L. Jiang, O.G. Wong, E.W. Lam, K.K. Chan, H.Y. Ngan, X.F. Le, A.N. Cheung, Stem cell transcription factor NANOG controls cell migration and invasion via dysregulation of E-cadherin and FoxJ1 and contributes to adverse clinical outcome in ovarian cancers. Oncogene 32, 3500–3509 (2013)

    PubMed  CAS  Google Scholar 

  157. U.I. Ezeh, P.J. Turek, R.A. Reijo, A.T. Clark, Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 104, 2255–2265 (2005)

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The author declares no conflicts of interest regarding this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis A. Voutsadakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voutsadakis, I.A. The chemosensitivity of testicular germ cell tumors. Cell Oncol. 37, 79–94 (2014). https://doi.org/10.1007/s13402-014-0168-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-014-0168-6

Keywords

Navigation