Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 15, 2013

Synthetic routes to magnetic nanoparticles for MPI

  • Harald Kratz EMAIL logo , Dietmar Eberbeck , Susanne Wagner , Matthias Taupitz and Jörg Schnorr

Abstract

Magnetic particle imaging (MPI) is a new imaging technique for visualizing the three-dimensional distribution of superparamagnetic iron oxide nanoparticles with specific properties (MPI tracers). Initial results obtained with MPI using superparamagnetic iron oxide as blood pool markers suggest that the method has great potential for cardiovascular imaging. Conversely, no clinically approved MPI tracers currently exist that could be used to exploit this potential of MPI. This article describes thermal decomposition and coprecipitation, two relevant methods for synthesizing and optimizing superparamagnetic iron oxide nanoparticles for MPI. Furthermore it summarizes the recent literature on MPI tracers and explores what can be learned from structural studies with Resovist® for novel synthesis approaches.


Corresponding author: Dr. Harald Kratz, Department of Radiology, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany, Phone: +49-30-450-527180, Fax: +49-30-527901, E-mail:

We thank Bettina Herwig for language editing. The research was supported by the German Ministry for Education and Research (BMBF), Grant No. FKZ 13N11091 and 13N11092.

References

[1] Bai L, Ma X, Liu J, Sun X, Zhao D, Evans DG. Rapid separation and purification of nanoparticles in organic density gradients. J Am Chem Soc 2010; 132: 2333–2337.10.1021/ja908971dSearch in Google Scholar

[2] Bee A, Massart R, Neveu S. Synthesis of very fine maghemite particles. J Magn Magn Mater 1995; 149: 6–9.10.1016/0304-8853(95)00317-7Search in Google Scholar

[3] Bica D, Vékás L, Avdeev MV, et al. Sterically stabilized water based magnetic fluids: synthesis, structure and properties. J Magn Magn Mater 2007; 311: 17–21.10.1016/j.jmmm.2006.11.158Search in Google Scholar

[4] Blums E, Chukhrov AY. Separation processes in polydisperse magnetic fluids. J Magn Magn Mater 1993; 122: 110–114.10.1016/0304-8853(93)91051-8Search in Google Scholar

[5] Borgert J, Schmidt JD, Schmale I, et al. Fundamentals and applications of magnetic particle imaging. J Cardiovasc Comput Tomogr 2012; 6: 149–153.10.1016/j.jcct.2012.04.007Search in Google Scholar PubMed

[6] Bulte JWM, Walczak P, Bernard S, et al. Developing Cellular MPI: Initial Experience. Magnetic Nanoparticles: Particle Science, Imaging Technology, and Clinical Applications: Proceedings of the First International Workshop on Magnetic Particle Imaging 2010: 201–204.10.1142/9789814324687_0028Search in Google Scholar

[7] Bulte JW, Walczak P, Gleich B, et al. MPI Cell tracking: what can we learn from MRI? Proc Soc Photo Opt Instrum Eng 2011; 7965: 79650z.10.1117/12.879844Search in Google Scholar PubMed PubMed Central

[8] Chen X, Wong R, Khalidov I, et al. Inflamed leukocyte-mimetic nanoparticles for molecular imaging of inflammation. Biomaterials 2011; 32: 7651–7661.10.1016/j.biomaterials.2011.06.030Search in Google Scholar PubMed PubMed Central

[9] Colvin VL, Yavuz CT, Mayo JT, Yu W. Size separation of magnetic nanoparticles, patent, US7938969 (10/05/2011)Search in Google Scholar

[10] Del Monte F, Morales MP, Levy D, et al. Formation of γ-Fe2O3 isolated nanoparticles in a silica matrix. Langmuir 1997; 13: 3627–3634.10.1021/la9700228Search in Google Scholar

[11] Dutz S, Clement JH, Eberbeck D, et al. Ferrofluids of magnetic multicore nanoparticles for biomedical applications. J Magn Magn Mater 2009; 321: 1501–1504.10.1016/j.jmmm.2009.02.073Search in Google Scholar

[12] Dutz S, Eberbeck D, Müller R, Zeisberger M. Fractionated magnetic multicore nanoparticles for magnetic particle imaging. Springer Proc Phys 2012; 140: 81–85.10.1007/978-3-642-24133-8_13Search in Google Scholar

[13] Dutz S, Müller R, Zeisberger M. Larger Single Domain Iron Oxide Nanoparticles for Magnetic Particle Imaging. Magnetic Nanoparticles: Particle Science, Imaging Technology, and Clinical Applications: Proceedings of the First International Workshop on Magnetic Particle Imaging. 2010: 37.10.1142/9789814324687_0005Search in Google Scholar

[14] Eberbeck D, Dennis CL, Huls NF, Krycka KL, Gruttner C, Westphal F. Multicore magnetic nanoparticles for magnetic particle imaging. Magnetics, IEEE Transactions on 2013; 49: 269–274.10.1109/TMAG.2012.2226438Search in Google Scholar

[15] Eberbeck D, Wiekhorst F, Wagner S, Trahms L. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl Phys Lett 2011; 98: 182502–182502.10.1063/1.3586776Search in Google Scholar

[16] Fauconnier N, Bee A, Roger J, Pons JN. Adsorption of gluconic and citric acids on maghemite particles in aqueous medium. Progr Colloid Polym Sci 1996; 100: 212–216.10.1007/BFb0115782Search in Google Scholar

[17] Fauconnier N, Bee A, Roger J, Pons JN. Synthesis of aqueous magnetic liquids by surface complexation of maghemite nanoparticles. J Mol Liq 1999; 83: 233–242.10.1016/S0167-7322(99)00088-4Search in Google Scholar

[18] Ferguson RM, Khandhar AP, Krishnan KM. Magnetization spectroscopy of biocompatible magnetite (Fe3O4) nanoparticles for MPI. Proceedings of SPIE 2011; 7965: 79650W.10.1117/12.878321Search in Google Scholar

[19] Ferguson RM, Khandhar AP, Krishnan KM. Tracer design for magnetic particle imaging (invited). J Appl Phys 2012; 111: 7B318–7B3185.10.1063/1.3676053Search in Google Scholar PubMed PubMed Central

[20] Ferguson RM, Minard KR, Khandhar AP, Krishnan KM. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys 2011; 38: 1619–1626.10.1118/1.3554646Search in Google Scholar PubMed PubMed Central

[21] Gleich B. Method and apparatus for improved determination of spacial nonagglomerated magnetic particle distribution in an area of examination, patent, WO2004/091398 A2 (28/10/2004).Search in Google Scholar

[22] Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005; 435: 1214–1217.10.1038/nature03808Search in Google Scholar PubMed

[23] Gleich B, Weizenecker J, Borgert J. Experimental results on fast 2D-encoded magnetic particle imaging. Phys Med Biol 2008; 53: N81–N84.10.1088/0031-9155/53/6/N01Search in Google Scholar PubMed

[24] Gonzales M, Krishnan KM. Phase transfer of highly monodisperse iron oxide nanocrystals with Pluronic F127 for biomedical applications. J Magn Magn Mater 2007; 311: 59–62.10.1016/j.jmmm.2006.10.1150Search in Google Scholar

[25] Goodwill PW, Saritas EU, Croft LR, et al. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater 2012; 24: 3870–3877.10.1002/adma.201200221Search in Google Scholar PubMed

[26] Goodwill PW, Tamrazian A, Croft LR, et al. Ferrohydrodynamic relaxometry for magnetic particle imaging. Appl Phys Lett 2011; 98: 262502.10.1063/1.3604009Search in Google Scholar

[27] Grubbs RB. Roles of polymer ligands in nanoparticle stabilization. Polym Rev 2007; 47: 197–215.10.1080/15583720701271245Search in Google Scholar

[28] Haegele J, Sattel T, Erbe M, et al. Magnetic particle imaging (MPI). Rofo-Fortschr Rontg 2011; 184: 420–426.Search in Google Scholar

[29] Hanauer M, Pierrat S, Zins I, Lotz A, Sönnichsen C. Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 2007; 7: 2881–2885.10.1021/nl071615ySearch in Google Scholar PubMed

[30] Huang C-C, Chuang K-Y, Chou C-P, et al. Size-control synthesis of structure deficient truncated octahedral Fe3-δO4 nanoparticles: high magnetization magnetites as effective hepatic contrast agents. J Mater Chem 2011; 21: 7472–7479.10.1039/c1jm10325cSearch in Google Scholar

[31] Hyeon T, Lee SS, Park J, Chung Y, Na HB. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 2001; 123: 12798–12801.10.1021/ja016812sSearch in Google Scholar PubMed

[32] Jana NR, Chen Y, Peng X. Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 2004; 16: 3931–3935.10.1021/cm049221kSearch in Google Scholar

[33] Jolivet J-P, Froidefond C, Pottier A, et al. Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling. J Mater Chem 2004; 14: 3281–3288.Search in Google Scholar

[34] Kang YS, Risbud S, Rabolt JF, Stroeve P. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater 1996; 8: 2209–2211.10.1021/cm960157jSearch in Google Scholar

[35] Kelland DR. Magnetic separation of nanoparticles. {IEEE} Trans. Magn 1998; 34: 2123–2125.10.1109/20.706824Search in Google Scholar

[36] Kim DK, Mikhaylova M, Zhang Y, Muhammed M. Protective coating of superparamagnetic iron oxide nanoparticles. Chem Mater 2003; 15: 1617–1627.10.1021/cm021349jSearch in Google Scholar

[37] Koutzarova T, Kolev S, Ghelev C, Paneva D, Nedkov I. Microstructural study and size control of iron oxide nanoparticles produced by microemulsion technique. Phys Status Solidi C 2006; 3: 1302–1307.10.1002/pssc.200563115Search in Google Scholar

[38] Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008; 108: 2064–2110.10.1021/cr068445eSearch in Google Scholar

[39] Lawaczeck R, Bauer H, Frenzel T, et al. Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting. Pre-clinical profile of SH U555A. Acta Radiol 1997; 38: 584–597.Search in Google Scholar

[40] Li L, Yang Y, Ding J, Xue J. Synthesis of magnetite nanooctahedra and their magnetic field-induced two-/three-dimensional superstructure. Chem Mater 2010; 22: 3183–3191.10.1021/cm100289dSearch in Google Scholar

[41] Lourenco C, Teixeira M, Simões S, Gaspar R. Steric stabilization of nanoparticles: size and surface properties. Int J Pharm 1996; 138: 1–12.10.1016/0378-5173(96)04486-9Search in Google Scholar

[42] Löwa N, Eberbeck D, Steinhoff U, Wiekhorst F, Trahms L. Potential of Improving MPI Performance by Magnetic Separation. Springer Proc Phys 2012; 140: 73–78.10.1007/978-3-642-24133-8_12Search in Google Scholar

[43] Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 2007; 46: 1222–1244.10.1002/anie.200602866Search in Google Scholar PubMed

[44] Lüdtke-Buzug K, Biederer S, Erbe M, Knopp T, Sattel TF, Buzug TM. Superparamagnetic iron oxide nanoparticles for magnetic particle imaging. Magnetic Nanoparticles: Particle Science, Imaging Technology, and Clinical Applications: Proceedings of the First International Workshop on Magnetic Particle Imaging 2010: 44.10.1142/9789814324687_0006Search in Google Scholar

[45] Lüdtke-Buzug K, Rapoport DH, Schneider D. Characterization of iron-oxide loaded adult stem cells for magnetic particle imaging in targeted cancer therapy. AIP Conference Proceedings 2010; 1311: 244.10.1063/1.3530019Search in Google Scholar

[46] Mandel K, Hutter F. The magnetic nanoparticle separation problem. Nano Today 2012; 7: 73–78.10.1016/j.nantod.2012.05.001Search in Google Scholar

[47] Markov DE, Boeve H, Gleich B, et al. Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol 2010; 55: 6461–6473.10.1088/0031-9155/55/21/008Search in Google Scholar

[48] Martin AL, Hickey JL, Ablack AL, Lewis JD, Luyt LG, Gillies ER. Synthesis of bombesin-functionalized iron oxide nanoparticles and their specific uptake in prostate cancer cells. J Nanopart Res 2009; 12: 1599–1608.10.1007/s11051-009-9681-3Search in Google Scholar

[49] Martínez-Mera I, Espinosa-Pesqueira ME, Pérez-Hernández R, Arenas-Alatorre J. Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Mater Lett 2007; 61: 4447–4451.10.1016/j.matlet.2007.02.018Search in Google Scholar

[50] Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001; 53: 283–318.Search in Google Scholar

[51] Nassar N, Husein M. Preparation of iron oxide nanoparticles from FeCl3 solid powder using microemulsions. Phys Status Solidi A 2006; 203: 1324–1328.10.1002/pssa.200566154Search in Google Scholar

[52] Novak JP, Nickerson C, Franzen S, Feldheim DL. Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal Chem 2001; 73: 5758–5761.10.1021/ac010812tSearch in Google Scholar

[53] Pardoe H, Chua-Anusorn W, St Pierre TG, Dobson J. Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol. J Magn Magn Mater 2001; 225: 41–46.10.1016/S0304-8853(00)01226-9Search in Google Scholar

[54] Park J, An K, Hwang Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 2004; 3: 891–895.10.1038/nmat1251Search in Google Scholar PubMed

[55] Peng X-H, Qian X, Mao H, Wang AY. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 2008; 3: 311–321.Search in Google Scholar

[56] Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 2009; 9: 1909–1915.10.1021/nl900031ySearch in Google Scholar PubMed

[57] Qiao R, Yang C, Gao M. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 2009; 19: 6274–6293.10.1039/b902394aSearch in Google Scholar

[58] Qiu P, Mao C. Viscosity gradient as a novel mechanism for the centrifugation-based separation of nanoparticles. Adv Mater 2011; 23: 4880–4885.10.1002/adma.201102636Search in Google Scholar PubMed PubMed Central

[59] Rauwerdink AM, Weaver JB. Measurement of molecular binding using the Brownian motion of magnetic nanoparticle probes. Appl Phys Lett 2010; 96: 033702.10.1063/1.3291063Search in Google Scholar

[60] Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol 2004; 39: 56–63.10.1097/01.rli.0000101027.57021.28Search in Google Scholar PubMed

[61] Reimer P, Tombach B, Daldrup H, et al. Neue MR-Kontrastmittel in der Leberdiagnostik Erste klinische Ergebnisse mit hepatobiliärem Eovist®(Gadolinium-EOB-DTPA) und RES-spezifischem Resovist®(SH U 555 A). Radiologe 1996; 36: 124–133.10.1007/s001170050049Search in Google Scholar PubMed

[62] Rockenberger J, Scher EC, Alivisatos AP. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 1999; 121: 11595–11596.10.1021/ja993280vSearch in Google Scholar

[63] Sahoo Y, Goodarzi A, Swihart MT, et al. Aqueous ferrofluid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control. J Phys Chem B 2005; 109: 3879–3885.10.1021/jp045402ySearch in Google Scholar PubMed

[64] Saritas EU, Goodwill PW, Croft LR, et al. Magnetic particle imaging (MPI) for NMR and MRI researchers. J Magn Reson 2013; 229: 116–126.10.1016/j.jmr.2012.11.029Search in Google Scholar PubMed PubMed Central

[65] Simberg D, Duza T, Park JH, et al. Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci USA 2007; 104: 932–936.10.1073/pnas.0610298104Search in Google Scholar PubMed PubMed Central

[66] Sonvico F, Mornet S, Vasseur S, et al. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem 2005; 16: 1181–1188.10.1021/bc050050zSearch in Google Scholar PubMed

[67] Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 2002; 124: 8204–8205.10.1021/ja026501xSearch in Google Scholar PubMed

[68] Sun X, Tabakman SM, Seo W-S, et al. Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. Angew Chem Int Ed 2009; 48: 939–942.10.1002/anie.200805047Search in Google Scholar

[69] Sun S, Zeng H, Robinson DB, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 2004; 126: 273–279.10.1021/ja0380852Search in Google Scholar

[70] Sweeney SF, Woehrle GH, Hutchison JE. Rapid purification and size separation of gold nanoparticles via diafiltration. J Am Chem Soc 2006; 128: 3190–3197.10.1021/ja0558241Search in Google Scholar

[71] Taupitz M, Schnorr J, Abramjuk C, et al. New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits. J Magn Reson Imaging 2000; 12: 905–911.10.1002/1522-2586(200012)12:6<905::AID-JMRI14>3.0.CO;2-5Search in Google Scholar

[72] Taupitz M, Wagner S, Schnorr J, et al. Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol 2004; 39: 394–405.10.1097/01.rli.0000129472.45832.b0Search in Google Scholar

[73] Thünemann AF, Rolf S, Knappe P, Weidner S. In situ analysis of a bimodal size distribution of superparamagnetic nanoparticles. Anal Chem 2009; 81: 296–301.10.1021/ac802009qSearch in Google Scholar

[74] Veintemillas-Verdaguer S, Morales MP, Bomati-Miguel O, et al. Colloidal dispersions of maghemite nanoparticles produced by laser pyrolysis with application as NMR contrast agents. J Phys D: Appl Phys 2004; 37: 2054–2059.10.1088/0022-3727/37/15/002Search in Google Scholar

[75] Wagner S, Schnorr J, Pilgrimm H, Hamm B, Taupitz M. Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Invest Radiol 2002; 37: 167–177.10.1097/00004424-200204000-00002Search in Google Scholar

[76] Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 2009; 54: L1.10.1088/0031-9155/54/5/L01Search in Google Scholar

[77] Woo K, Hong J, Choi S, et al. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 2004; 16: 2814–2818.10.1021/cm049552xSearch in Google Scholar

[78] Wu J-H, Ko SP, Liu H-L, Kim S, Ju J-S, Kim YK. Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties. Mater Lett 2007; 61: 3124–3129.10.1016/j.matlet.2006.11.032Search in Google Scholar

[79] Xie Q-L, Liu J, Xu X-X, Han G-B, Xia H-P, He X-M. Size separation of Fe2O3 nanoparticles via membrane processing. Sep Purif Technol 2009; 66: 148–152.10.1016/j.seppur.2008.11.016Search in Google Scholar

[80] Xu J, Yang H, Fu W, et al. Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J Magn Magn Mater 2007; 309: 307–311.10.1016/j.jmmm.2006.07.037Search in Google Scholar

[81] Yavuz CT, Mayo JT, Yu WW, et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 2006; 314: 964–967.10.1126/science.1131475Search in Google Scholar PubMed

[82] Yu WW, Chang E, Sayes CM, Drezek R, Colvin VL. Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer. Nanotechnology 2006; 17: 4483–4487.10.1088/0957-4484/17/17/033Search in Google Scholar

[83] Yu WW, Falkner JC, Yavuz CT, Colvin VL. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem Commun (Camb) 2004: 21: 2306–2307.10.1039/b409601kSearch in Google Scholar PubMed

[84] Zhang ZJ, Chen XY, Wang BN, Shi CW. Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties. J Cryst Growth 2008; 310: 5453–5457.10.1016/j.jcrysgro.2008.08.064Search in Google Scholar

[85] Zhang L, He R, Gu H-C. Synthesis and kinetic shape and size evolution of magnetite nanoparticles. Mater Res Bull 2006; 41: 260–267.10.1016/j.materresbull.2005.08.024Search in Google Scholar

[86] Zhang L, Li Q, Liu S, Ang M, Tade MO, Gu H-C. Synthesis of pyramidal, cubical and truncated octahedral magnetite nanocrystals by controlling reaction heating rate. Adv Powder 2011; 22: 532–536.10.1016/j.apt.2010.07.014Search in Google Scholar

[87] Zhao L, Chano T, Morikawa S, et al. Hyperbranched polyglycerol-grafted superparamagnetic iron oxide nanoparticles: synthesis, characterization, functionalization, size separation, magnetic properties, and biological applications. Adv Funct Mater 2012; 22: 5107–5117.10.1002/adfm.201201060Search in Google Scholar

Received: 2012-11-7
Accepted: 2013-7-8
Published Online: 2013-08-15
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 23.5.2024 from https://www.degruyter.com/document/doi/10.1515/bmt-2012-0057/html
Scroll to top button