Skip to main content
Log in

Linear sweep voltammetry: a cheap and powerful technique for the identification of the silver tarnish layer constituents

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The potentialities of linear sweep voltammetry (LSV) for the characterization of the tarnish layer formed on pure and sterling silver samples exposed in the chapel and in the museum, at the Cathedral of Porto, in Portugal, are well demonstrated in this study. The technique allows the identification of the constituents of the thin tarnishing layers and also its relative abundance. A much more complex composition than the silver sulphide commonly associated with silver tarnish has been found, namely, silver chlorides, silver oxides and minor amounts of silver sulphide on the pure silver, plus copper oxides and a mixed copper–silver sulphide on the sterling silver samples. The tarnishing films were very thin mainly composed by silver chloride and silver oxides layers with estimated thicknesses ranging between 0.22 and 9.63 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Leygraf C, Graedel T (2000) Atmospheric Corrosion. Wiley-Interscience, John Wiley and Sons Inc, New York

    Google Scholar 

  2. Watanabe M, Hokazono A, Handa T, Ichino T, Kuwaki N (2006) Corros Sci 48:3759–3766

    Article  CAS  Google Scholar 

  3. de Mele MFL, Duffó G (2002) J Appl Electrochem 32:157–164

    Article  Google Scholar 

  4. Ankersmith HD, Tennent NH, Watts SF (2005) Atmos Environ 39:695–707

    Article  Google Scholar 

  5. Baer NS, Banks PN (1985) Int J Mus Manag Curatorsh 4:9–20

    Google Scholar 

  6. Arroyave C, Morcillo M (1995) Corros Sci 37:293–305

    Article  CAS  Google Scholar 

  7. Graedel TE, Franey JP, Gualtieri JG, Kammlott GW, Malm DL (1985) Corros Sci 25:1163–1180

    Article  CAS  Google Scholar 

  8. Homem PCMD (2006) Contributo para a Preservação do Património Cultural em Ligas de Prata: O Caso do Retábulo da Sé do Porto. Master Thesis, Lisboa, Portugal

  9. Graedel TE (1992) J Electrochem Soc 139:1963–1970

    Article  CAS  Google Scholar 

  10. Tran TTM, Fiaud C, Sutter MM (2005) Corros Sci 47:1724–1737

    Article  CAS  Google Scholar 

  11. Payer HA (2011) Electrochim Acta 56:2781–2791

    Article  Google Scholar 

  12. Hallet K, Tickett D, McPhail DS, Chater RJ (2003) Apll Surf Sci 203–204:789–792

    Article  Google Scholar 

  13. Homem P, Fonseca I, Cavalheiro J (2008) Corros Prot Mater 27:82–86

    CAS  Google Scholar 

  14. Doménech A, Doménech-Carbó MT, Pasies T, Bouzas MC (2011) Electroanalysis 23:2803–2812

    Article  Google Scholar 

  15. Rice DW, Peterson PBP, Rogby EB, Phlips PBP, Cappell RJ, Tremoureux R (1981) J Electrochem Soc 128:275–284

    Article  CAS  Google Scholar 

  16. Chen Z, Liang D, Ma G, Frankel GS, Allen HC, Kelly RG (2010) Corros Eng Sci Technol 45:169–180

    Article  CAS  Google Scholar 

  17. Franey JP, Graedel TE (1985) J Air Pollut Control Assoc 35:644–648

    Article  CAS  Google Scholar 

  18. Doménech-Carbó A (2010) J Solid State Electochem 14:363–379

    Article  Google Scholar 

  19. Costa V, Leyssens K, Richard N, Scholz F (2010) J Solid State Electrochem 14:449–451

    Article  CAS  Google Scholar 

  20. Costa V, Dubus M (2007) In: Padfield T & Borchersen K (eds) Museum Microclimates. National Museum of Denmark, Denmark (ISBN 9788-77-602-080-4)

  21. Degrigny C (2010) J Solid State Electrochem 14:353–361

    Article  CAS  Google Scholar 

  22. Doménech-Carbó A, Doménech-Carbó MT, Costa V (2009) In: Scholz F (ed) Electrochemical methods applied to archaeometry, conservation and restoration, Monographs in Electrochemistry Series, Spring, Berlin

  23. Doménech-Carbó A (2010) J Solid State Electochem 14:1767–1780

    Google Scholar 

  24. Doménech A, Doménech-Carbó MT, Peiró MA (2011) Anal Chem 83:5639–5644

    Article  Google Scholar 

  25. Doménech A, Doménech-Carbó MT, Martínez-Lázaro I (2010) Anal Chim Acta 680:1–9

    Article  Google Scholar 

  26. Skogvold SM, Mikkelsen O, Billon G, Garnier C, Lesven L, Barthe J (2006) Anal Bioanal Chem 384:1567–1577

    Article  CAS  Google Scholar 

  27. Bernard MC, Dauvergne E, Evesque M, Keddam M, Takenouti H (2005) Corros Sci 47:663–679

    Article  CAS  Google Scholar 

  28. Scholz F, Meyer B (1998) In: Bard AJ and Rubinstein I (eds) Electroanalytical Chemistry, A Series of Advances 20:1–86. Marcel Dekker, New York

    Google Scholar 

  29. Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of Immobilized Particles and Droplets. Springer, Berlin

    Google Scholar 

  30. Scholz F, Lange B (1992) Trends Anal Chem 11:359–367

    Article  CAS  Google Scholar 

  31. Scholz F, Meyer B (1994) Chem Soc Rev 323:341–347

    Article  Google Scholar 

  32. Scholz F, Nitschke L, Kemnitz E, Olesch T, Henrion G, Hass R, Bagchi RN, Hermann R, Pruss N, Wilde W (1989) Fresenius Z Anal Chem 335:571–572

    Article  CAS  Google Scholar 

  33. Scholz F (2011) J Solid State Electrochem 15:1699–1702

    Article  CAS  Google Scholar 

  34. Zaky AM, Assaf FH, Abd El Rehim SS, Mohamed BM (2004) Appl Surf Sci 221:349–357

    Article  CAS  Google Scholar 

  35. Zaky AM, Abd El-Rehim SS, Mohamed BM (2006) Int J Electrochem Sci 1:17–31

    CAS  Google Scholar 

  36. Assaf FH, Zaky AM, Abd El-Rehim SS (2002) Appl Surf Sci 187:182–187

    Article  Google Scholar 

  37. Teijelo ML, Vilche JR, Arvia AJ (1983) J Electroanal Chem 162:207–223

    Article  Google Scholar 

  38. Hazzazi OA, Zaky AM, Amin MA, Abd El Rehim SS (2008) Int J Electrochem Sci 3:489–508

    CAS  Google Scholar 

  39. Birss VI, Smith K (1987) Electrochim Acta 32:259–268

    Article  CAS  Google Scholar 

  40. Birss VI, Wright GI (1981) Electrochim Acta 26:1809–1817

    Article  CAS  Google Scholar 

  41. Tacconi NR, Rajeshwar K, Lezna RO (1996) J Phys Chem 100:18234–18239

    Article  Google Scholar 

  42. Langh R, Ankersmit HA, Joosten I (2004) Proceedings of Metal 2004. National Museum of Australia Camberra, Australia

    Google Scholar 

  43. Ankersmith HA, Doménech A, Tennent NH (2004) Tarnishing of silver; evaluation by color measurements. In: Proceedings.of the International Conference on Metals Conservation. Santiago de Chile, Western Australian Museum, Welhpool

  44. de la Fuente D, Vega JM, Viejo F, Díaz I, Morcillo M (2011) Atmos Environ 45:1242–1250

    Article  Google Scholar 

  45. Camuffo D, Grieken RV, Busse H-J, Sturaro G, Valentino A, Bernardi A, Blades N, Shooter D, Gysels K, Deutsch F, Wieser M, Kim O, Ulrych U (2001) Atmos Environ 35(Supplement 1):S127–S140

    Article  CAS  Google Scholar 

  46. Ankersmit HA, Noble G, Ridge R, Stirling D, Kennedy N (2000) Scott Soc Conserv Restor J 11:12–13

    Google Scholar 

  47. Zhang S, Meyer B, Moh G, Scholz F (2005) Electroanalysis 7:319–328

    Article  Google Scholar 

  48. Scholz F, Nitschke L, Kemnitz E, Olesch T, Henrion G, Hass D, Bagchi RN, Herrmann R, Pruss N, Wilde W (1989) Fresenius Z Anal Chem 335:571–572

    Article  CAS  Google Scholar 

  49. Scholz F, Nitschke L, Henrion G (1990) Electroanalysis 2:85–87

    Article  CAS  Google Scholar 

  50. Scholz F, Lange B, Jaworski A, Pelzer J (1991) Fresenius J Anal Chem 340:140–144

    Article  CAS  Google Scholar 

  51. Vieira MT, Piedade AP (2006) In: Sudarsham TS et al. (eds) AST International Materials Park, Ohio and IOM Communications Ltd, United Kingdom

  52. Thickett D (2004) In: Proceedings of the 6th Indoor Air Quality 2004 Meeting (IAQ2004), Pádova, Italy

Download references

Acknowledgments

The authors would like to acknowledge the financial support from FCT (Fundação para a Ciência e Tecnologia) to CCMM (Centro de Ciências Moleculares e Materiais). S Capelo acknowledges the University of Évora for her sabbatical leave. All the authors also thank Doctor M. R. Nunes for the laborious and delicate work in the preparation of all the working electrodes for the electrochemical studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. E. Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capelo, S., Homem, P.M., Cavalheiro, J. et al. Linear sweep voltammetry: a cheap and powerful technique for the identification of the silver tarnish layer constituents. J Solid State Electrochem 17, 223–234 (2013). https://doi.org/10.1007/s10008-012-1884-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1884-3

Keywords

Navigation