Published online by Cambridge University Press: 12 March 2014
For a fixed countably infinite structure Γ with finite relational signature τ, we study the following computational problem: input are quantifier-free τ-formulas ϕ0, ϕ1, …, ϕn that define relations R0, R1, …, Rn over Γ. The question is whether the relation R0 is primitive positive definable from R1, …, Rn, i.e., definable by a first-order formula that uses only relation symbols for R1, …, Rn, equality, conjunctions, and existential quantification (disjunction, negation, and universal quantification are forbidden).
We show decidability of this problem for all structures Γ that have a first-order definition in an ordered homogeneous structure Δ with a finite relational signature whose age is a Ramsey class and determined by finitely many forbidden substructures. Examples of structures Γ with this property are the order of the rationals, the random graph, the homogeneous universal poset, the random tournament, all homogeneous universal C-relations, and many more. We also obtain decidability of the problem when we replace primitive positive definability by existential positive, or existential definability. Our proof makes use of universal algebraic and model theoretic concepts, Ramsey theory, and a recent characterization of Ramsey classes in topological dynamics.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.