Skip to main content
Log in

Chlorpyrifos Leads to Oxidative Stress-Induced Death of Hippocampal Cells in Vitro

  • Published:
Neurophysiology Aims and scope

Chlorpyrifos (ClPF) is a broad-spectrum organophosphate insecticide widely used in agriculture, industry, and at home. Like all organophosphates, ClPH affects the nervous system by inhibiting the enzyme acetylcholinesterase (AChE). In addition, it is transformed in higher animals into ClPF-oxon that is about 3000 times more potent against the nervous system than ClPF itself. As was found recently, the action on ACh is not the only mechanism of ClPF toxicity. One other mechanism of this organophosphate is induction of oxidative stress leading to generation of free radicals. We investigated the effects of ClPF on hippocampal cells of the rat in vitro and focused our attention on mediation of its cytotoxic effect related to the production of reactive oxygen species. Transfection of cultured hippocampal cells by green fluorescent protein (GFP) was used. We studied the dose dependence of the intensity of ClPF-induced damage and cell death of hippocampal neurons in vitro and the dependence on the duration of ClPF action. We also observed survival of the cells incubated in the media with only ClPF and under the same conditions but with the addition of Trolox as an antioxidant. It was found that Trolox demonstrated clear neuroprotective effects at all concentrations of ClPF tested during the research period. It is concluded that the negative effect of ClPF on hippocampal neurons results, to a considerable extent, in the development of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. T. Salyha, “Potential neurotoxicity of chlorpyrifos and methods of its investigation,” Med. Chem., 11, No. 4, 69-72 (2009).

    CAS  Google Scholar 

  2. Yu. Salyha, “Biological effects assessment of chlorpyrifos and some aspects of its neurotoxicity,” Visn. Lviv Univ. Biol. Ser., 54, 3-14 (2010).

    Google Scholar 

  3. J. E. Aldridge, F. J. Seidler, A. Meyer et al., “Serotonergic systems targeted by developmental exposure to chlorpyrifos: Effects during different critical periods,” Environ. Health Perspect., 111, No. 14, 1736-1743 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. K. Dam, F. J. Seidler, and T. A. Slotkin, “Chlorpyrifos exposure during a critical neonatal period elicits gender-selective deficits in the development of coordination skills and locomotor activity,” Brain Res. Dev. Brain Res., 121, 179-187 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. J. Flaskos, “The developmental neurotoxicity of organophosphorus insecticides: A direct role for the oxon metabolites,” Toxicol. Lett., No. 209, 86-93 (2012).

    Google Scholar 

  6. S. J. Garcia, F. J. Seidler, and T. A. Slotkin, “Developmental neurotoxicity elicited by prenatal or postnatal chlorpyrifos exposure: effects on neurospecific proteins indicate changing vulnerabilities,” Environ. Health Perspect., 111. No. 3, 297-303 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. R. C. Gupta, J.K. Malik, and D. Milatovic, “Organophosphate and carbamate pesticides,” In: Reproductive and Developmental Toxicology, R. C. Gupta (ed.),. Elsevier Academic Press, Burlington, 2011, pp. 471–486.

    Chapter  Google Scholar 

  8. K. D. Whitney, F. J. Seidler, and T. A. Slotkin. “Developmental neurotoxicity of chlorpyrifos: cellular mechanisms,” Toxicol. Appl. Pharmacol., No. 134, 53–62 (1995).

    Google Scholar 

  9. A. Caughlan, K. Newhouse, U. Namgung, et al., “Chlorpyrifos induces apoptosis in rat cortical neurons that is regulated by a balance between p38 and ERK/JNK MAP kinases,” Toxicol. Sci., No.78, 125-134 (2004).

    Google Scholar 

  10. E. H. Delgado, E. L. Streck, J. L. Quevedo, et. al., “Mitochondrial respiratory dysfunction and oxidative stress after chronic malathion exposure,” Neurochem. Res., 31, No. 8, 1021-1025 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. M. D. Saulsbury, S.O. Heyliger, K. Wang, et al., “Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells,” Toxicol., No. 259, 1-9 (2009).

  12. T. A. Slotkin, C.A. Oliver, F. J. Seidler, et. al., “Critical periods for the role of oxidative stress in the developmental neurotoxicity of chlorpyrifos and terbutaline, alone or in combination,” Brain Res. Dev. Brain Res., 157, No.2, 172-178 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. T. A. Slotkin and F. J. Seidler, “Comparative developmental neurotoxicity of organophosphates in vivo: transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems,” Brain Res. Bull., 72, No. 4/6, 232-274 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. S. Gandhi and A. Y. Abramov, “Mechanism of oxidative stress in neurodegeneration,” Oxidat. Med. Cell. Longevity., 2012, Article ID 428010, 11 pages, (2012).

  15. K. Facecchia, L. A. Fochesato, S. D. Ray, et al., “Oxidative toxicity in neurodegenerative diseases: role of mitochondrial dysfunction and therapeutic strategies,” J. Toxicol., 2011, Article ID 683728, 12 pages, (2011).

  16. K. J. Barnham, C. L. Masters, and A. I. Bush, “Neurodegenerative diseases and oxidatives stress,” Nat. Rev. Drug Discov., 3, No. 3, 205–214 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. J. T. Coyle and P. Puttfarcken, “Oxidative stress, glutamate, and neurodegenerative disorders,” Science, No. 262, 689-695 (1993).

  18. M. Dumont, M. T. Lin, and M. F. Beal, “Mitochondria and antioxidant targeted therapeutic strategies for Alzheimer’s disease,” J. Alzheimer’s Dis., 20, No. 2, S633–S643 (2010).

    Google Scholar 

  19. J. Emerit, M. Edeas, and F. Bricaire “Neurodegenerative diseases and oxidative stress,” Biomed. Pharmacother., 58, No 1, 39–46 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. B. Halliwell, “Oxidative stress and neurodegeneration: where are we now?,” J. Neurochem., 97, No. 6, 1634–1658 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. M. T. Lin and M. F. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, 443, No. 7113, 787–795 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. D. Pratico, “Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows,” Ann. N. Y. Acad. Sci., 1147, 70–78 (2008).

    Article  PubMed  CAS  Google Scholar 

  23. X. Wang and E. K. Michaelis, “Selective neuronal vulnerability to oxidative stress in the brain,” Front. Aging Neurosci., 2, 12 (2010).

    PubMed  Google Scholar 

  24. Yu. Salyha, V. Rosalovsky, and R. Fedyakov “Glutathione system in erythrocytes of rats intoxicated by chlorpyrifos,” Visn. Lviv Univ. Biol. Ser., No. 60. 99-104, (2012).

  25. A. Caughlan, K. Newhouse, U. Namgung, et al., “Chlorpyrifos induces apoptosis in rat cortical neurons that is regulated by a balance between p38 and ERK/JNK MAP kinases,” Toxicol. Sci., 78. No. 1, 125-134 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. S.J. Garcia, F.J. Seidler, D. Qiao, et al. “Chlorpyrifos targets developing glia: effects on glial fibrillary acidic protein,” Brain Res. Dev. Brain Res., 133, 151-161 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. T. Buerli, C. Pellegrino, K. Baer, et al., “Efficient transfection of DNA or shRNA vectors into neurons using magnetofection,” Nat. Protocols., 2, 3090-3101 (2007).

    Article  CAS  Google Scholar 

  28. A. Ivanov, C. Pellegrino, S. Rama, et al., “Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the ERK activity in cultured rat hippocampal neurons,” J. Physiol., 572, No. 3, 789–798 (2006).

    PubMed  CAS  Google Scholar 

  29. C. Pellegrino, O. Gubkina, H. Becq, et al., “Knocking-down of the KCC2 in rat hippocampal neurons increases intracellular chloride concentration and compromises neuronal survival,” J. Physiol., 589, Part 10, 2475-96 (2011).

    Article  PubMed  CAS  Google Scholar 

  30. S. M. Mense, A. Sengupta, C. Lan, et al., “The common insecticides cyfluthrin and chlorpyrifos alter the expression of a subset of genes with diverse functions in primary human astrocytes,” Toxicol. Sci., 93, No. 3, 125-135 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. W. Li, J. E. Casida, “Organophosphorus neuropathy target asterase inhibitors selectively block outgrowth of neurite-like and cell processes in cultured cells,” Toxicol. Lett., 98, No. 3, 139-146 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. D. Qiao, F. J. Seidler, and T. A. Slotkin, “Developmental neurotoxicity of chlorpyrifos modeled in vitro: comparative effects of metabolites and other cholinesterase inhibitors on DNA synthesis in PC12 and C6 cells,” Environ. Health Perspect., 109, No. 9, 900-913 (2001).

    Article  Google Scholar 

  33. D. Qiao, F. J. Seidler, and T. A. Slotkin, “Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos,” Toxicol. Appl. Pharmacol, 206, No. 1, 17-26 (2006).

    Article  Google Scholar 

  34. С. Behl, F. Lezoualc’h, T. Trapp, et al., “Glucocorticoids enhance oxidative stress-induced cell death in hippocampal neurons in vitro,” Endocrinology, 138, No. 1, 101-106 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. T. Salyha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salyha, Y.T. Chlorpyrifos Leads to Oxidative Stress-Induced Death of Hippocampal Cells in Vitro. Neurophysiology 45, 193–199 (2013). https://doi.org/10.1007/s11062-013-9356-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-013-9356-7

Key words

Navigation