Skip to main content
Log in

Chromosomal imbalances exclusively detected in invasive front area are associated with poor outcome in laryngeal carcinomas from different anatomical sites

  • Research Article
  • Published:
Tumor Biology

Abstract

Laryngeal squamous cell carcinoma (LSCC) is a malignant neoplasm exhibiting aggressive phenotype, high recurrence rate, and risk of developing second primary tumors. Current evidence suggests that cells in the invasive front of carcinomas have different molecular profiles compared to those in superficial areas. This study aimed to identify candidate genes in the invasive front and superficial cells from laryngeal carcinomas that would be useful as molecular markers. Invasive front and tumor surface cells of 32 LSCC were evaluated by high-resolution comparative genomic hybridization. Both CCND1 copy number gains and cyclin D1 protein expression were evaluated to confirm gains of 11q13.3. Losses of 3q26.2-q29 and 18q23 were confirmed by loss of heterozygosity analysis. The most frequent chromosomal alterations observed only in invasive front cells involved gains of 1p, 4q, and 9p and losses of 3p, 11p, 12p, 13q, 17q, 18p, 19q, 20q, 21q, and Xp. Gains of 11q13 were detected in both components from glottis and supraglottis but only in invasive front cells from transglottic tumors. Fluorescence in situ hybridization confirmed gains of CCND1/CPE11 in a subset of cases. In supraglottic tumors, cyclin D1 positivity was associated with distant metastasis (P = 0.0018) and with decreased disease-free survival (P = 0.042). Loss of heterozygosity at 3q26.2 and 18q23 were associated with lymph node involvement (P = 0.055) and worsened prognosis, respectively. In conclusion, this study revealed regions that could be targeted in the search for molecular markers in LSCC. Cyclin D1 may be useful as a prognostic marker in supraglottic tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Almadori G, Bussu F, Cadoni G, Galli J, Paludetti G, Maurizi M. Molecular markers in laryngeal squamous cell carcinoma: towards an integrated clinicobiological approach. Eur J Cancer. 2005;41:683–93.

    Article  CAS  PubMed  Google Scholar 

  3. Ries LAG, Melbert D, Krapcho M, Mariotto A, Miller BA, Feuer EJ, et al. SEER Cancer Statistics Review, 1975–2004. National Cancer Institute (Bethesda, MD). http://seer.cancer.gov/csr/1975_2004/, based on November 2006 SEER data submission, posted to the SEER web site, 2007. Accessed 5 June 2013.

  4. Gao X, Fisher SG, Mohideen N, Emami B. Second primary cancers in patients with laryngeal cancer: a population-based study. Int J Radiat Oncol Biol Phys. 2003;56:427–35.

    Article  PubMed  Google Scholar 

  5. Broders AC. Carcinoma of the mouth: types and degrees of malignancy. Am J Roentgenol Radium Ther Nucl Med. 1927;17:90–3.

    Google Scholar 

  6. Kurokawa H, Yamashita Y, Murata T, Yoshikawa T, Tokudome S, Miura K, et al. Histological grading of malignancy correlates with regional lymph node metastasis and survival of patients with oral squamous cell carcinoma. Fukuoka Igaku Zasshi. 1998;89:225–31.

    CAS  PubMed  Google Scholar 

  7. Sawair FA, Irwin CR, Gordon DJ, Leonard AG, Stephenson M, Napier SS. Invasive front grading: reliability and usefulness in the management of oral squamous cell carcinoma. J Oral Pathol Med. 2003;32:1–9.

    Article  PubMed  Google Scholar 

  8. Bryne M, Koppang HS, Lilleng R, Kjaerheim A. Malignancy grading of the deep invasive margins of oral squamous cell carcinomas has high prognostic value. J Pathol. 1992;166:375–81.

    Article  CAS  PubMed  Google Scholar 

  9. Bànkfalvi A, Piffkò J. Prognostic and predictive factors in oral cancer: the role of the invasive tumour front. J Oral Pathol Med. 2000;29:291–8.

    Article  PubMed  Google Scholar 

  10. Graflund M, Sorbe B, Bryne M, Karlsson M. The prognostic value of a histologic grading system, DNA profile, and MIB-1 expression in early stages of cervical squamous cell carcinomas. Int J Gynecol Cancer. 2002;12:149–57.

    Article  PubMed  Google Scholar 

  11. Noguchi M, Kinjyo H, Kohama GI, Nakamori K. Invasive front in oral squamous cell carcinoma: image and flow cytometric analysis with clinicopathologic correlation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93:682–7.

    Article  PubMed  Google Scholar 

  12. Po W, Yuen A, Lam KY, Lam LK, Ho CM, Wong A, et al. Prognostic factors of clinically stage I and II oral tongue carcinoma—a comparative study of stage, thickness, shape, growth pattern, invasive front malignancy grading, Martinez-Gimeno score, and pathologic features. Head Neck. 2002;24:513–20.

    Article  Google Scholar 

  13. Kurokawa H, Zhang M, Matsumoto S, Yamashita Y, Tanaka T, Tomoyose T, et al. The relationship of the histologic grade at the deep invasive front and the expression of Ki-67 antigen and p53 protein in oral squamous cell carcinoma. J Oral Pathol Med. 2005;34:602–7.

    Article  CAS  PubMed  Google Scholar 

  14. Bryne M, Jenssen N, Boysen M. Histological grading in the deep invasive front of T1 and T2 glottic squamous cell carcinomas has high prognostic value. Virchows Arch. 1995;427:277–81.

    Article  CAS  PubMed  Google Scholar 

  15. Ambrosio EP, Rosa FE, Domingues MA, Villacis RA, Coudry RD, Tagliarini JV, et al. Cortactin is associated with perineural invasion in the deep front area of laryngeal carcinomas. Hum Pathol. 2011;42:1221–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818–21.

    Article  CAS  PubMed  Google Scholar 

  17. Mitelman F, Johansson B, Mertens F. Mitelman database of chromosome aberrations and gene fusions in cancer. 2013. http://cgap.nci.nih.gov/Chromosomes/Mitelman. Accessed 5 June 2013

  18. Kujawski M, Rydzanicz M, Sarlomo-Rikala M, Gabriel A, Szyfter K. Chromosome alterations reflect clonal evolution in squamous cell carcinoma of the larynx. Med Sci Monit. 2002;8:279–82.

    Google Scholar 

  19. Schwerer MJ, Sailer A, Kraft K, Baczako K, Maier H. Expression of retinoblastoma gene product in respiratory epithelium and sinonasal neoplasms: relationship with p16 and cyclin D1 expression. Histol Histopathol. 2003;18:143–51.

    CAS  PubMed  Google Scholar 

  20. Schlade-Bartusiak K, Stembalska A, Ramsey D. Significant involvement of chromosome 13q deletions in progression of larynx cancer, detected by comparative genomic hybridization. J Appl Genet. 2005;46:407–13.

    PubMed  Google Scholar 

  21. Stembalska A, Blin N, Ramsey D, Sasiadek MM. Three distinct regions of deletion on 13q in squamous cell carcinoma of the larynx. Oncol Rep. 2006;16:417–21.

    CAS  PubMed  Google Scholar 

  22. Keser I, Toraman AD, Ozbilim G, Guney K, Luleci G. Gains and losses of chromosome in laryngeal squamous cell carcinoma using comparative genomic hybridization. Yonsei Med J. 2008. doi:10.3349/ymj.2008.49.6.949.

    PubMed Central  PubMed  Google Scholar 

  23. Tremmel SC, Götte K, Popp S, Weber S, Hörmann K, Bartram CR, et al. Intratumoral genomic heterogeneity in advanced head and neck cancer detected by comparative genomic hybridization. Cancer Genet Cytogenet. 2003;144:165–74.

    Article  CAS  PubMed  Google Scholar 

  24. Juhász A, Balázs M, Sziklay I, Rákosy Z, Treszl A, Répássy G, et al. Chromosomal imbalances in laryngeal and hypopharyngeal cancers detected by comparative genomic hybridization. Cytometry. 2005;67A:151–60.

    Article  Google Scholar 

  25. Hermsen M, Guervos AM, Meijer G, van Diest P, Suarez Nieto C, Marcos CA, et al. Chromosomal changes in relation to clinical outcome in larynx and pharynx squamous cell carcinoma. Cell Oncol. 2005;27:191–8.

    CAS  PubMed  Google Scholar 

  26. Patmore HS, Ashman JNE, Stafford ND, Berrieman HK, MacDonald A, Greenman J, et al. Genetic analysis of head and neck squamous cell carcinoma using comparative genomic hybridization identifies specific aberrations associated with laryngeal origin. Cancer Lett. 2007;258:55–62.

    Article  CAS  PubMed  Google Scholar 

  27. Stoecklein NH, Erbersdobler A, Schmidt-Kittler O, Diebold J, Schardt JA, Izbicki JR, et al. SCOMP is superior to degenerated oligonucleotide primed-polymerase chain reaction for global amplification of minute amounts of DNA from microdissected archival tissue samples. Am J Pathol. 2002;161:43–51.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ojopi EP, Rogatto SR, Caldeira JR, Barbiéri-Neto J, Squire JA. Comparative genomic hybridization detects novel amplifications in fibroadenomas of the breast. Gene Chromosomes Cancer. 2001;30:25–31.

    Article  CAS  Google Scholar 

  29. Kirchhoff M, Gerdes T, Rose H, Maahr J, Ottesen AM, Lundsteen C. Detection of chromosomal gains and losses in comparative genomic hybridization analysis based on standard reference intervals. Cytometry. 1998;31:163–73.

    Article  CAS  PubMed  Google Scholar 

  30. Shaffer LG, Slovak ML, Campbell LJ. ISCN. International System of Human Cytogenetic Nomenclature. Basel: Krager; 2009.

    Google Scholar 

  31. Cawkwell L, Bell SM, Lewis FA, Dixon MF, Taylor GR, Quirke P. Rapid detection of allele loss in colorectal tumours using microsatellites and fluorescent DNA technology. Br J Cancer. 1993;67:1262–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bérgamo NA, Rogatto SR, Poli-Frederico RC, Reis PP, Kowalski LP, Zielenska M, et al. Comparative genomic hybridization analysis detects frequent over-representation of DNA sequences at 3q, 7p, and 8q in head and neck carcinomas. Cancer Genet Cytogenet. 2000;119:48–55.

    Article  PubMed  Google Scholar 

  33. Bauer VL, Braselmann H, Henke M, Mattern D, Walch A, Unger K, et al. Chromosomal changes characterize head and neck cancer with poor prognosis. J Mol Med (Berl). 2008. doi:10.1007/s00109-008-0397-0.

    Google Scholar 

  34. Heppner GH. Tumor heterogeneity. Cancer Res. 1984;44:2259–65.

    CAS  PubMed  Google Scholar 

  35. Aubele M, Mattis A, Zitzelsberger H, Walch A, Kremer M, Hutzler P, et al. Intratumoral heterogeneity in breast carcinoma revealed by laser-microdissection and comparative genomic hybridization. Cancer Genet Cytogenet. 1999;110:94–102.

    Article  CAS  PubMed  Google Scholar 

  36. Andersen CL, Wiuf C, Kruhoffer M, Korsgaard M, Laurberg S, Orntoft TF. Frequent occurrence of uniparental disomy in colorectal cancer. Carcinogenesis. 2007;28:38–48.

    Article  CAS  PubMed  Google Scholar 

  37. Wang K, Li J, Li S, Bolund L, Wiuf C. Estimation of tumor heterogeneity using CGH array data. BMC Informatics. 2009. doi:10.1186/1471-2105-10-12.

    Google Scholar 

  38. Mitra RS, Zhang Z, Henson BS, Kurnit DM, Carey TE, D'Silva NJ. Rap1A and rap1B ras-family proteins are prominently expressed in the nucleus of squamous carcinomas: nuclear translocation of GTP-bound active form. Oncogene. 2003;22:6243–56.

    Article  CAS  PubMed  Google Scholar 

  39. Ashazila MJ, Kannan TP, Venkatesh RN, Hoh BP. Microsatellite instability and loss of heterozygosity in oral squamous cell carcinoma in Malaysian population. Oral Oncol. 2011;47:358–64.

    Article  CAS  PubMed  Google Scholar 

  40. Tsui IF, Rosin MP, Zhang L, Ng RT, Lam WL. Multiple aberrations of chromosome 3p detected in oral premalignant lesions. Cancer Prev Res. 2008. doi:10.1158/1940-6207.CAPR-08-0123.

    Google Scholar 

  41. Gunduz M, Nagatsuka H, Demircan K, Gunduz E, Cengiz B, Ouchida M, et al. Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas. Gene. 2005;356:109–17.

    Article  CAS  PubMed  Google Scholar 

  42. Ghosh A, Ghosh S, Maiti GP, Sabbir MG, Zabarovsky ER, Roy A, et al. Frequent alterations of the candidate genes hMLH1, ITGA9 and RBSP3 in early dysplastic lesions of head and neck: clinical and prognostic significance. Cancer Sci. 2010;101:1511–20.

    Article  CAS  PubMed  Google Scholar 

  43. Kowalski LP, Franco EL, de Andrade SJ, Oliveira BV, Pontes PL. Prognostic factors in laryngeal cancer patients submitted to surgical treatment. J Surg Oncol. 1991;48:87–95.

    Article  CAS  PubMed  Google Scholar 

  44. Danic D, Maruic M, Uzarevic B, Milicic D. Prognostic factors in squamous cell carcinoma of the larynx. J Otorhinolaryngol Relat Spec. 2000;62:143–8.

    Article  CAS  Google Scholar 

  45. Vlachtsis K, Nikolaou A, Markou K, Fountzilas G, Daniilidis I. Clinical and molecular prognostic factors in operable laryngeal cancer. Eur Arch Otorhinolaryngol. 2005;262:890–8.

    Article  PubMed  Google Scholar 

  46. Rodrigo JP, García-Carracedo D, García LA, Menéndez S, Allonca E, González MV, et al. Distinctive clinicopathological associations of amplification of the cortactin gene at 11q13 in head and neck squamous cell carcinomas. J Pathol. 2009;217:516–23.

    Article  CAS  PubMed  Google Scholar 

  47. Izzo JG, Papadimitracopoulou VA, Li XQ, Ibarguen H, Lee JS, El-Naggar A, et al. Dysregulated cyclin D1 expression early in head and neck tumorigenesis: In vitro evidence for an association with subsequent gene amplification. Oncogene. 1998;17:2313–22.

    Article  CAS  PubMed  Google Scholar 

  48. Freier K, Hofele C, Knoepfle K, Gross M, Devens F, Dyckhoff G, et al. Cytogenetic characterization of head and neck squamous cell carcinoma cell lines as model systems for the functional analyses of tumor-associated genes. J Oral Pathol Med. 2010;39(5):382–9.

    PubMed  Google Scholar 

  49. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.

    Article  CAS  PubMed  Google Scholar 

  50. Bellacosa A, Almadori G, Cavallo S, Cadoni G, Galli J, Ferrandina G, et al. Cyclin D1 gene amplification in human laryngeal squamous cell carcinomas: prognostic significance and clinical implications. Clin Cancer Res. 1996;2(1):175–80.

    CAS  PubMed  Google Scholar 

  51. Taneja P, Maglic D, Kai F, Zhu S, Kendig RD, Fry EA, et al. Classical and novel prognostic markers for breast cancer and their clinical significance. Clin Med Insights Oncol. 2010;4:15–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Ishidate T, Matsumine A, Toyoshima K, Akiyama T. The APC-hDLG complex negatively regulates cell cycle progression from the G0/G1 to S phase. Oncogene. 2000;19:365–72.

    Article  CAS  PubMed  Google Scholar 

  53. Pearlstein RP, Benninger MS, Rybicki BA, Torres F, DL Vd. Preliminary study of 18q loss of heterozygosity and poor survival in patients with stage III head neck cancer. On-line Interact J Otolaryngol. 1997;II:FA:1–6.

    Google Scholar 

  54. Pearlstein R, Benninger M, Carey T. Loss of 18q predicts poor survival of patients with squamous cell carcinoma of the head and neck. Genes Chromosomes Cancer. 1998;21:333–9.

    Article  CAS  PubMed  Google Scholar 

  55. Odell EW, Jani P, Sherrif M, Ahluwalia SM, Hibbert J, Levison DA, et al. The prognostic value of individual histologic grading parameters in small lingual squamous cell carcinoma. The importance of the pattern of invasion. Cancer. 1994;74:789–94.

    Article  CAS  PubMed  Google Scholar 

  56. Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT, et al. Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res. 2000;60:5887–94.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Francine Blumental de Abreu and Hellen Kuasne for their technical assistance. The authors also express their gratitude to Dr Fabiola Encinas Rosa and Dr Claudia A Rainho for their many helpful suggestions throughout the manuscript's preparation. This work was supported by grants from the National Institute of Science and Technology in Oncogenomics (INCITO—Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP 2008/57887-9 and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq 573589/08-9) and FAPESP 07/52265-7.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Regina Rogatto.

Additional information

Eliane Papa Ambrosio and Cássia Gisele Terrassani Silveira contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Microsatellite markers: location and primer sets. (DOCX 23.0 kb)

Online Resource 2

Differential chromosomal gains and losses in invasive front and surface cells detected by HR-CGH. (DOC 44.5 kb)

Online Resource 3

Comparison between cyclin D1 expression in unpaired LSCC samples and clinical and histopathological data. (DOC 162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrosio, E.P., Silveira, C.G.T., Drigo, S.A. et al. Chromosomal imbalances exclusively detected in invasive front area are associated with poor outcome in laryngeal carcinomas from different anatomical sites. Tumor Biol. 34, 3015–3026 (2013). https://doi.org/10.1007/s13277-013-0866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0866-0

Keywords

Navigation