Abstract
In the multiverse the scale of supersymmetry breaking, \( \widetilde{m} = {F_X}/{M_{ * }} \) ∗, may scan and environmental constraints on the dark matter density may exclude a large range of m from the reheating temperature after inflation down to values that yield a lightest supersymmetric particle (LSP) mass of order a TeV. After selection effects, for example from the cosmological constant, the distribution for \( \widetilde{m} \) in the region that gives a TeV LSP may prefer larger values. A single environmental constraint from dark matter can then lead to multi-component dark matter, including both axions and the LSP, giving a TeV-scale LSP somewhat lighter than the corresponding value for single-component LSP dark matter.
If supersymmetry breaking is mediated to the Standard Model sector at order X † X and higher, only squarks, sleptons and one Higgs doublet acquire masses of order \( \widetilde{m} \). The gravitino mass is lighter by a factor of M ∗ /M Pl and the gaugino masses are suppressed by a further loop factor. This Spread Supersymmetry spectrum has two versions, one with Higgsino masses arising from supergravity effects of order the gravitino mass giving a wino LSP, and another with the Higgsino masses generated radiatively from gaugino masses giving a Higgsino LSP. The environmental restriction on dark matter fixes the LSP mass to the TeV domain, so that the squark and slepton masses are order 103 TeV and 106 TeV in these two schemes. We study the spectrum, dark matter and collider signals of these two versions of Spread Supersymmetry. The Higgs boson is Standard Model-like and predicted to lie in the range 110-145 GeV; monochromatic photons in cosmic rays arise from dark matter annihilations in the halo; exotic short charged tracks occur at the LHC, at least for the wino LSP; and there are the eventual possibilities of direct detection of dark matter and detailed exploration of the TeV-scale states at a future linear collider. Gauge coupling unification is at least as precise as in minimal supersymmetric theories.
If supersymmetry breaking is also mediated at order X, a much less hierarchical spectrum results. The spectrum in this case is similar to that of the Minimal Supersymmetric Standard Model, but with the superpartner masses 1-2 orders of magnitude larger than those expected in natural theories.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].
S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [INSPIRE].
M.R. Douglas, The statistics of string/M theory vacua, JHEP 05 (2003) 046 [hep-th/0303194] [INSPIRE].
V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, The anthropic principle and the mass scale of the standard model, Phys. Rev. D 57 (1998) 5480 [hep-ph/9707380] [INSPIRE].
T. Damour and J.F. Donoghue, Constraints on the variability of quark masses from nuclear binding, Phys. Rev. D 78 (2008) 014014 [arXiv:0712.2968] [INSPIRE].
S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett. 59 (1987) 2607 [INSPIRE].
H. Martel, P.R. Shapiro and S. Weinberg, Likely values of the cosmological constant, Astrophys. J. 492 (1998) 29 [astro-ph/9701099] [INSPIRE].
J. Garriga, M. Livio and A. Vilenkin, The cosmological constant and the time of its dominance, Phys. Rev. D 61 (2000) 023503 [astro-ph/9906210] [INSPIRE].
R. Bousso, R. Harnik, G.D. Kribs and G. Perez, Predicting the cosmological constant from the causal entropic principle, Phys. Rev. D 76 (2007) 043513 [hep-th/0702115] [INSPIRE].
A. De Simone, A.H. Guth, M.P. Salem and A. Vilenkin, Predicting the cosmological constant with the scale-factor cutoff measure, Phys. Rev. D 78 (2008) 063520 [arXiv:0805.2173] [INSPIRE].
G. Larsen, Y. Nomura and H. Roberts, The cosmological constant in the quantum multiverse, Phys. Rev. D 84 (2011) 123512 [arXiv:1107.3556] [INSPIRE].
N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].
L.J. Hall and Y. Nomura, a finely-predicted Higgs boson mass from a finely-tuned weak scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].
A.D. Linde, Inflation and axion cosmology, Phys. Lett. B 201 (1988) 437 [INSPIRE].
F. Wilczek, A model of anthropic reasoning, addressing the dark to ordinary matter coincidence, hep-ph/0408167 [INSPIRE].
M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, Dimensionless constants, cosmology and other dark matters, Phys. Rev. D 73 (2006) 023505 [astro-ph/0511774] [INSPIRE].
G. Giudice and A. Masiero, A natural solution to the mu problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].
J. Casas and C. Muñoz, A natural solution to the mu problem, Phys. Lett. B 306 (1993) 288 [hep-ph/9302227] [INSPIRE].
L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].
L.J. Hall, Aspects of N = 1 supergravity models, in Supersymmetry and Supergravity /Nonperturbative QCD: Winter School, Mahabaleshwar India (1984), Lecture Notes in Physics. Vol. 208, P. Roy and V. Singh eds., Springer, Berlin Germany (1984), pp. 197.
R. Hempfling, Can the supersymmetric μ parameter be generated dynamically without a light singlet?, Phys. Lett. B 329 (1994) 222 [hep-ph/9404257] [INSPIRE].
J.E. Kim and H.P. Nilles, Symmetry principles toward solutions of the μ problem, Mod. Phys. Lett. A 9 (1994) 3575 [hep-ph/9406296] [INSPIRE].
L.J. Hall, Y. Nomura and A. Pierce, R symmetry and the μ problem, Phys. Lett. B 538 (2002) 359 [hep-ph/0204062] [INSPIRE].
L.J. Hall and Y. Nomura, Evidence for the multiverse in the standard model and beyond, Phys. Rev. D 78 (2008) 035001 [arXiv:0712.2454] [INSPIRE].
L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].
G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].
P.Z. Skands, et al., SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [INSPIRE].
M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
M.R. Buckley, L. Randall and B. Shuve, LHC searches for non-chiral weakly charged multiplets, JHEP 05 (2011) 097 [arXiv:0909.4549] [INSPIRE].
Tevatron Electroweak Working Group, CDF and D0 collaborations, M. Lancaster, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb −1 of data, arXiv:1107.5255 [INSPIRE].
S. Bethke, The 2009 World Average of αs, Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [INSPIRE].
J. Hisano, Proton decay in the supersymmetric grand unified models, hep-ph/0004266 [INSPIRE].
Super-Kamiokande collaboration, H. Nishino et al., Search for Proton Decay via p → e +π0 and p → μ +π0 in a Large Water Cherenkov Detector, Phys. Rev. Lett. 102 (2009) 141801 [arXiv:0903.0676] [INSPIRE].
K. Abe et al., Letter of Intent: The Hyper-Kamiokande Experiment — Detector Design and Physics Potential —, arXiv:1109.3262 [INSPIRE].
Y. Kawamura, Triplet doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [INSPIRE].
L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [INSPIRE].
L.J. Hall and Y. Nomura, Grand unification in higher dimensions, Annals Phys. 306 (2003) 132 [hep-ph/0212134] [INSPIRE].
Y. Nomura, Strongly coupled grand unification in higher dimensions, Phys. Rev. D 65 (2002) 085036 [hep-ph/0108170] [INSPIRE].
A. Hebecker and J. March-Russell, Proton decay signatures of orbifold GUTs, Phys. Lett. B 539 (2002) 119 [hep-ph/0204037] [INSPIRE].
L.J. Hall and Y. Nomura, A Complete theory of grand unification in five-dimensions, Phys. Rev. D 66 (2002) 075004 [hep-ph/0205067] [INSPIRE].
R. Essig, Direct detection of non-chiral dark matter, Phys. Rev. D 78 (2008) 015004 [arXiv:0710.1668] [INSPIRE].
J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct detection of electroweak-interacting dark matter, JHEP 07 (2011) 005 [arXiv:1104.0228] [INSPIRE].
J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Direct detection of the Wino and Higgsino-like neutralino dark matters at one-loop level, Phys. Rev. D 71 (2005) 015007 [hep-ph/0407168] [INSPIRE].
A. Abdo et al., Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications, Phys. Rev. Lett. 104 (2010) 091302 [arXiv:1001.4836] [INSPIRE].
G. Vertongen and C. Weniger, Hunting Dark Matter Gamma-Ray Lines with the Fermi LAT, JCAP 05 (2011) 027 [arXiv:1101.2610] [INSPIRE].
U. Chattopadhyay, D. Choudhury, M. Drees, P. Konar and D. Roy, Looking for a heavy Higgsino LSP in collider and dark matter experiments, Phys. Lett. B 632 (2006) 114 [hep-ph/0508098] [INSPIRE].
J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, hep-ph/0306127 [INSPIRE].
J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].
J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev. D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].
J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
M. Ibe, T. Moroi and T. Yanagida, Possible Signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].
J.F. Gunion and S. Mrenna, Probing models with near degeneracy of the chargino and LSP at a linear e + e − collider, Phys. Rev. D 64 (2001) 075002 [hep-ph/0103167] [INSPIRE].
M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and Gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].
S. Bailly, K. Jedamzik and G. Moultaka, Gravitino Dark Matter and the Cosmic Lithium Abundances, Phys. Rev. D 80 (2009) 063509 [arXiv:0812.0788] [INSPIRE].
G. Elor, H.-S. Goh, L.J. Hall, P. Kumar and Y. Nomura, Environmentally Selected WIMP Dark Matter with High-Scale Supersymmetry Breaking, Phys. Rev. D 81 (2010) 095003 [arXiv:0912.3942] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1111.4519
Rights and permissions
About this article
Cite this article
Hall, L.J., Nomura, Y. Spread Supersymmetry. J. High Energ. Phys. 2012, 82 (2012). https://doi.org/10.1007/JHEP01(2012)082
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2012)082