Skip to main content
Log in

A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In this paper we present a comprehensive review of ionic polymer metal composite (IPMC) covering fundamentals of IPMC; from fabrication processes to control and applications. IPMC is becoming an increasingly popular material among scholars, engineers and scientists due to its inherent property of low activation voltage, large bending strain, i.e., transformation electrical energy to mechanical energy, and properties to be used as bidirectional material, i.e., it can be used as actuators and sensors. Among the diversity of electro active polymers (EAPs), recently developed IPMCs are good candidates for use in bio-related application because of their biocompatibility. Yet, the challenge remains in controlling a somewhat complicated material as mechanical, electrical and chemical properties interact with each other in the ionic polymer. Several IPMC fabrication processes, their mechanical characteristics and performance, a number of recent IPMC applications and pertaining mathematical modeling have been reported in this paper. Also we have attempted to present concisely the control of IPMC and effects of various factors in the performance of IPMC. The applications of IPMC have been growing, and recently more sophisticated IPMC actuator applications have been performed. This indicates that the IPMC actuators hold potential for more sophisticated control application. Extensive references are provided for more indepth explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alici, G., Spinks, G., Huynh, N. N., Sarmadi, L. and Minato, R., “Establishment of a biomimetic device based on tri-layer polymer actuators-propulsion fins,” Bioinspir. Biomim., Vol. 2, No. 2, pp. 18–30, 2007.

    Article  Google Scholar 

  2. McGovern, S., Alici, G., Truong, V.-T. and Spinks, G., “Finding NEMO (novel electromaterial muscle oscillator): a polypyrrole powered robotic fish with real-time wireless speed and directional control,” Smart Mater. Struct., Vol. 18, No. 9, pp. 1–11, 2009.

    Article  Google Scholar 

  3. Alici, G. and Higgins, M. J., “Normal stiffness calibration of microfabricated tri-layer conducting polymer actuators,” Smart Mater. Struct., Vol. 18, No. 6, pp. 1–10, 2009.

    Article  Google Scholar 

  4. Bar-Cohen, Y. and Zhang, Q., “Electroactive Polymer Actuators and Sensors,” MRS Bulletin, Vol. 33, No. 3, pp. 173–181, 2008.

    Article  Google Scholar 

  5. Bar-Cohen, Y., “Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, 2nd ed.,” SPIE Publications, 2004.

  6. Bar-Cohen, Y., Bao, X., Sherrit, S. and Lih, S.-S., “Characterization of the Electromechanical Properties of Ionomeric Polymer-Metal Composite (IPMC),” SPIE Smart Structures and Materials: EAPAD Conference, Vol. 4695, pp. 1–8, 2002.

    Google Scholar 

  7. Oguro, K., Kawami, Y. and Takenaka, H., “Bending of an ionconducting polymer film-electrode composite by an electric stimulus at low voltage,” Trans. Journal of Micromachine Society, Vol. 5, pp. 27–30, 1992.

    Google Scholar 

  8. Shahinpoor, M., “Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles,” Smart Mater. Struct., Vol. 1, No. 1, pp. 91–94, 1992.

    Article  Google Scholar 

  9. Sadeghipour, K., Salomon, R. and Neogi, S., “Development of a novel electrochemically active membrane and ’smart’ material based vibration sensor/damper,” Smart Mater. Struct., Vol. 1, No. 2, pp. 172–179, 1992.

    Article  Google Scholar 

  10. Grodzinsky, A. J., “Electromechanics of deformable polyelectrolyte membranes,” Ph.D. Thesis, Electrical Engineering, Massachusetts Institute of Technology, 1974.

  11. Kim, S. J., Lee, I. T. and Kim, Y. H., “Performance enhancement of IPMC actuator by plasma surface treatment,” Smart Mater. Struct., Vol. 16, No. 1, pp. N6–N11, 2007.

    Article  Google Scholar 

  12. Bar-Cohen, Y., “Electroactive polymers as artificial muscles-capabilities, potentials and challenges,” NTS Inc., pp. 1–12, 2000.

  13. Hunter, I. W. and Lafontaine, S., “A comparison of muscle with artificial actuators,” Technical digest of the IEEE solid state sensor and actuator workshop, pp. 178–185, 1992.

  14. Kim, H.-I., Kim, D.-K. and Han, J.-H., “Study of flapping actuator modules using IPMC,” SPIE 14th Annual Symposium Smart Structures and Materials, Vol. 6524, Paper No. 65241A, 2007.

  15. Nemat-Nasser, S. and Li, J. Y., “Electromechanical response of ionic polymer-metal composites,” J. Appl. Phys., Vol. 87, No. 7, pp. 3321–3331, 2000.

    Article  Google Scholar 

  16. Shahinpoor, M., Bar-Cohen, Y., Simpson, J. O. and Smith, J., “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles — a review,” Smart Mater. Struct., Vol. 7, No. 6, pp. 15–30, 1998.

    Article  Google Scholar 

  17. Pugal, D., Jung, K. M., Aabloo, A. and Kim, K. J., “Ionic polymer-metal composite mechanoelectrical transduction: review and perspectives,” Polym. Int., Vol. 59, No. 3, pp. 279–289, 2010.

    Article  Google Scholar 

  18. Paddison, S. J., Reagor, D. W. and Zawodzinski, T. A., “High frequency dielectric studies of hydrated Nafion,” J. Electroanal. Chem., Vol. 459, No. 1, pp. 91–97, 1998.

    Article  Google Scholar 

  19. Porfiri, M., “Charge dynamics in ionic polymer metal composites,” J. Appl. Phys., Vol. 104, No. 10, Paper No. 104915, 2008.

  20. Eisenberg, A. and King, M., “Ion-Containing Polymers: Physical Properties and Structure,” Academic Press, 1977.

  21. Eisenbert, A. and Bailey, F. E., “Coulombic Interactions in Macromolecular Systems,” American Chemical Society, 1986.

  22. Kim, K. J. and Shahinpoor, M., “Ionic polymer-metal composites: II. Manufacturing techniques,” Smart Mater. Struct., Vol. 12, No. 1, pp. 65–79, 2003.

    Article  Google Scholar 

  23. Oguro, K., “Ion-Exchange Polymer Metal Composites (IPMC) Membranes,” http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/IPMC_PrepProcedure.htm

  24. Shahinpoor, M. and Kim, K. J., “Novel ionic polymer-metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles,” Sens. Actuators A: Physical, Vol. 96, No. 2–3, pp. 125–132, 2002.

    Article  Google Scholar 

  25. Lee, S. J., Han, M. J., Kim, S. J., Jho, J. Y., Lee, H. Y. and Kim, Y. H., “A new fabrication method for IPMC actuators and application to artificial fingers,” Smart Mater. Struct., Vol. 15, No. 5, pp. 1217–1224, 2006.

    Article  Google Scholar 

  26. DuPont, “Safe Handling and Use of Perfluorosulfonic Acid Products,” DE 19880-0701, 2009.

  27. Kim, B. K., Kim, B. M., Ryu, J. W., Oh, I.-H., Lee, S.-K., Cha, S.-E. and Pak, J. H., “Analysis of mechanical characteristics of the ionic polymer metal composite (IPMC) actuator using cast ion-exchange film,” Proc. of SPIE, Vol. 5051, pp. 486–495, 2003.

    Article  Google Scholar 

  28. Chung, C. K., Fung, P. K., Hong, Y. Z., Ju, M. S., Lin, C. C. K. and Wu, T. C., “A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders,” Sens. Actuators B: Chemical, Vol. 117, No. 2, pp. 367–375, 2006.

    Article  Google Scholar 

  29. Chung, R., Chin, T., Chen, L. and Hsieh, M., “Preparation of gradually componential metal electrode on solution-casted Nafion™ membrane,” Biomol. Eng., Vol. 24, No. 5, pp. 434–437, 2007.

    Article  Google Scholar 

  30. Zhang, Y., Ma, C. and Dai, L., “Electrode Preparation and Electro-deformation of Ionic Polymer-metal Composite (IPMC),” 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 68–71, 2007.

  31. Johnson, T. and Amirouche, F., “Multiphysics modeling of an IPMC microfluidic control device,” Microsyst. Technol., Vol. 14, No. 6, pp. 871–879, 2008.

    Article  Google Scholar 

  32. Siripong, M., Fredholm, S., Nguyen, Q. A., Shih, B., Itescu, J. and Stolk, J., “A cost-effective fabrication method for ionic polymer-metal composites,” Materials Research Society Symposium Proceedings, Vol. 889, pp. 139–144, 2006.

    Google Scholar 

  33. Akle, B. J., Leo, D. J., Hickner, M. A. and Mcgrath, J. E., “Correlation of capacitance and actuation in ionomeric polymer transducers,” J. Mater. Sci., Vol. 40, No. 14, pp. 3715–3724, 2005.

    Article  Google Scholar 

  34. Takenaka, H., Torikai, E., Kawami, Y. and Wakabayashi, N., “Solid Polymer Electrolyte Water Electrolysis,” Int. J. Hydrogen Energy, Vol. 7, No. 5, pp. 397–403, 1982.

    Article  Google Scholar 

  35. Nemat-Nasser, S. and Wu, Y., “Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms,” J. Appl. Phys., Vol. 93, No. 9, pp. 5255–5267, 2003.

    Article  Google Scholar 

  36. Nakamura, T., Ihara, T., Horiuchi, T., Mukai, T. and Asaka, K., “Measurement and Modeling of Electro-Chemical Properties of Ion Polymer Metal Composite by Complex Impedance Analysis,” SICE JCMSI, Vol. 2, No. 6, pp. 373–378, 2009.

    Google Scholar 

  37. Cilingir, H. D. and Papila, M., “’Equivalent’ Electromechanical Coefficient for IPMC Actuator Design Based on Equivalent Bimorph Beam Theory,” EXME, Vol. 50, No. 8, pp. 1157–1168, 2010.

    Google Scholar 

  38. Shahinpoor, M., “Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles: a review,” Electrochim. Acta, Vol. 48, No. 14–16, pp. 2343–2353, 2003.

    Article  Google Scholar 

  39. Zamani, S. and Nemat-Nasser, S., “Controlled actuation of Nafion-based ionic polymer-metal composites (IPMCs) with ethylene glycol as solvent,” Proc. of SPIE, Vol. 5385, pp. 159–163, 2004.

    Article  Google Scholar 

  40. Onishi, K., Sewa, S., Asaka, K., Fujiwara, N. and Oguro, K., “Bending response of polymer electrolyte actuator,” Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices (EAPAD), Vol. 3987, pp. 121–128, 2000.

    Google Scholar 

  41. Bennett, M., “Ionic liquids as stable solvents for ionic polymer transducers,” Sens. Actuators A: Physical, Vol. 115, No. 1, pp. 79–90, 2004.

    Article  Google Scholar 

  42. Sutto, T. E., Trulove, P. C. and De Long, H. C., “Investigations of the effects of lithium ion and polymer type on the electrochemical behavior of ionic liquid/polymer gel electrolytes,” Proc. of the 13th International Symposium on Molten Salts, 2002.

  43. Lee, J. H., Oh, J. S., Jeong, G. H., Lee, J. Y., Yoon, B. R., Jho, J. Y. and Rhee, K. H., “New Computational Model for Predicting the Mechanical Behavior of Ionic Polymer Metal Composite (IPMC) Actuators,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 4, pp. 737–740, 2011.

    Article  Google Scholar 

  44. Yun, S., Kim, J. and Song, C., “Performance of Electro-active paper actuators with thickness variation,” Sens. Actuators A: Physical, Vol. 133, No. 1, pp. 225–230, 2007.

    Article  Google Scholar 

  45. Shahinpoor, M. and Kim, K. J., “Ionic polymer-metal composites: I. Fundamentals,” Smart Mater. Struct., No. 10, No. 4, pp. 819–833, 2001.

  46. Abe, Y., Mochizuki, A., Kawashima, T., Yamashita, S., Asaka, K. and Oguro, K., “Effect on bending behavior of counter cation species in perfluorinated sulfonate membrane-platinum composite,” Polymer. Adv. Tech., Vol. 9, No. 8, pp. 520–526, 1998.

    Article  Google Scholar 

  47. Onishi, K., Sewa, S., Asaka, K., Fujiwara, N. and Oguro, K., “The effects of counter ions on characterization and performance of a solid polymer electrolyte actuator,” Electrochim. Acta, Vol. 46, No. 8, pp. 1233–1241, 2001.

    Article  Google Scholar 

  48. Lee, S.-G., Park, H.-C., Pandita, S. D. and Yoo, Y., “Performance Improvement of IPMC (Ionic Polymer Metal Composites) for a Flapping Actuator,” Int. J. Control Autom. Syst., Vol. 4, No. 6, pp. 748–755, 2006.

    Google Scholar 

  49. Shahinpoor, M. and Kim, K. J., “The effect of surface-electrode resistance on the performance of ionic polymermetal composite (IPMC) artificial muscles,” Smart Mater. Struct., Vol. 9, No. 4, pp. 543–551, 2000.

    Article  Google Scholar 

  50. De Gennes, P. G., Okumura, K., Shahinpoor, M. and Kim, K. J., “Mechanoelectric effects in ionic gels,” Europhys. Lett., Vol. 50, No. 4, pp. 513–518, 2000.

    Article  Google Scholar 

  51. Barramba, J., Silva, J. and Costabranco, P., “Evaluation of dielectric gel coating for encapsulation of ionic polymer-metal composite (IPMC) actuators,” Sens. Actuators A: Physical, Vol. 140, No. 2, pp. 232–238, 2007.

    Article  Google Scholar 

  52. Shahinpoor, M., Bar-Cohen, Y., Xue, T., Simpson, J. O. and Smith, J., “Ionic Polymer-Metal Composites (IPMC) as Biomimetic Sensors and Actuators,” Proc. of SPIE’s 5th Annual International Symposium on Smart Structures and Materials, pp. 1–21, 1998.

  53. Chen, Z. and Tan, X., “A Control-Oriented and Physics-Based Model for Ionic Polymer-Metal Composite Actuators,” IEEE/ASME Transactions on Mechatronics, Vol. 13, No. 5, pp. 519–529, 2008.

    Article  MathSciNet  Google Scholar 

  54. Bandopadhya, D., “Derivation of Transfer Function of an IPMC Actuator Based on Pseudo-Rigid Body Model,” J. Reinf. Plast. Compos., Vol. 29, No. 3, pp. 372–390, 2010.

    Google Scholar 

  55. Bandopadhya, D., Bhattacharya, B. and Dutta, A., “Pseudo-rigid Body Modeling of IPMC for a Partially Compliant Fourbar Mechanism for Work Volume Generation,” J. Intell. Mater. Syst. Struct., Vol. 20, No. 1, pp. 51–61, 2008.

    Article  Google Scholar 

  56. Bandopadhya, D. and Njuguna, J., “Estimation of bending resistance of Ionic Polymer Metal Composite (IPMC) actuator following variable parameters pseudo-rigid body model,” Mater. Lett., Vol. 63, No. 9–10, pp. 745–747, 2009.

    Article  Google Scholar 

  57. Bao, X., Bar-Cohen, Y., Chang, Z. and Stewart, S., “Numerical modeling of single-layer electroactive polymer mirrors for space applications,” Proc. of SPIE, Vol. 5051, pp. 381–388, 2003.

    Article  Google Scholar 

  58. Brunetto, P., Fortuna, L., Graziani, S. and Strazzeri, S., “A model of ionic polymer-metal composite actuators in underwater operations,” Smart Mater. Struct., Vol. 17, No. 2, Paper No. 025029, 2008.

  59. Chen, Z., Tan, X., Will, A. and Ziel, C., “A dynamic model for ionic polymer-metal composite sensors,” Smart Mater. Struct., Vol. 16, No. 4, pp. 1477–1488, 2007.

    Article  Google Scholar 

  60. Farinholt, K. and Leo, D. J., “Modeling of electromechanical charge sensing in ionic polymer transducers,” Mech. Mater., Vol. 36, No. 5–6, pp. 421–433, 2004.

    Article  Google Scholar 

  61. Franklin, J. W., “Electromechanical Modeling of Encapsulated Ionic Polymer Transducers,” M.Sc. Thesis, Mechanical Engineering, Virginia Polytechnic Institute and State University, 2003.

  62. Ji, A.-H., Park, H. C., Nguyen, Q. V., Lee, J. W. and Yoo, Y. T., “Verification of Beam Models for Ionic Polymer-Metal Composite Actuator,” J. Bionic Eng., Vol. 6, No. 3, pp. 232–238, 2009.

    Article  Google Scholar 

  63. Kanno, R., Tadokoro, S., Takamori, T. and Hattori, M., “Linear Approximate Dynamic Model of ICPF (Ionic Conducting Polymer Gel Film) Actuator,” Proc. of the 1996 IEEE International Conference on Robotics and Automation, pp. 219–225, 1996.

  64. Lee, S., “Modeling of an IPMC Actuator-driven Zero-Net-Mass-Flux Pump for Flow Control,” J. of Intell. Mater. Syst. and Struct., Vol. 17, No. 6, pp. 533–541, 2006.

    Article  Google Scholar 

  65. Lee, S., Park, H. C. and Kim, K. J., “Equivalent modeling for ionic polymer-metal composite actuators based on beam theories,” Smart Mater. Struct., Vol. 14, No. 6, pp. 1363–1368, 2005.

    Article  Google Scholar 

  66. Lughmani, W. A., Jho, J. Y., Lee, J. Y. and Rhee, K., “Modeling of Bending Behavior of IPMC Beams Using Concentrated Ion Boundary Layer,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 5, pp. 131–139, 2009.

    Article  Google Scholar 

  67. McDaid, A. J., Aw, K. C., Haemmerle, E. and Xie, S. Q., “A conclusive scalable model for the complete actuation response for IPMC transducers,” Smart Mater. Struct., Vol. 19, No. 7, Paper No. 075011, 2010.

  68. Newbury, K. M. and Leo, D. J., “Electromechanical Modeling and Characterization of Ionic Polymer Benders,” J. of Intell. Mater. Syst. and Struct., Vol. 13, No. 1, pp. 51–60, 2002.

    Article  Google Scholar 

  69. Newbury, K. M. and Leo, D. J., “Linear Electromechanical Model of Ionic Polymer Transducers — Part I: Model Development,” J. of Intell. Mater. Syst. and Struct., Vol. 14, No. 6, pp. 333–342, 2003.

    Article  Google Scholar 

  70. Newbury, K. M. and Leo, D. J., “Linear Electromechanical Model of Ionic Polymer Transducers — Part II: Experimental Validation,” J. of Intell. Mater. Syst. and Struct., Vol. 14, No. 6, pp. 343–357, 2003.

    Article  Google Scholar 

  71. Punning, A., Johanson, U., Anton, M., Aabloo, A. and Kruusmaa, M., “A Distributed Model of Ionomeric Polymer Metal Composite,” J. of Intell. Mater. Syst. and Struct., Vol. 20, No. 14, pp. 1711–1724, 2009.

    Article  Google Scholar 

  72. Shahinpoor, M. and Kim, K. J., “Ionic polymer-metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles,” Smart Mater. Struct., Vol. 13, No. 6, pp. 1362–1388, 2004.

    Article  Google Scholar 

  73. Nemat-Nasser, S., “Micromechanics of actuation of ionic polymer-metal composites,” J. Appl. Phys., Vol. 92, No. 5, pp. 2899–2915, 2002.

    Article  Google Scholar 

  74. Kanno, R., Kurata, A., Hattori, M., Tadokoro, S., Takamori, T. and Oguro, K., “Characteristics and modeling of ICPF actuators,” Japan-USA Symposium on Flexible Automation, pp. 691–698, 1994.

  75. Chen, Z., Shen, Y., Xi, N. and Tan, X., “Integrated sensing for ionic polymer-metal composite actuators using PVDF thin films,” Smart Mater. Struct., Vol. 16, No. 2, pp. S262–S271, 2007.

    Article  Google Scholar 

  76. Akle, B. and Leo, D. J., “Electromechanical transduction in multilayer ionic transducers,” Smart Mater. Struct., Vol. 13, No. 5, pp. 1081–1089, 2004.

    Article  Google Scholar 

  77. Newbury, K. M. and Leo, D. J., “Electrically induced permanent strain in ionic polymer-metal composite actuators,” Proc. of SPIE, Vol. 4695, pp. 67–77, 2002.

    Article  Google Scholar 

  78. Bhat, N. and Kim, W.-J., “Precision force and position control of an ionic polymer metal composite,” Proc. of Int. Mech. Eng., Part I: J. of Syst. and Control Eng., Vol. 218, No. 6, pp. 421–432, 2004.

    Article  Google Scholar 

  79. Oh, S.-J. and Kim, H., “A study on the control of IPMC actuator using an adaptive fuzzy algorithm,” J. Mech. Sci. Technol., Vol. 18, No. 1, pp. 1–11, 2004.

    Google Scholar 

  80. Kothera, C. S. and Leo, D. J., “Position Control of a Square-plate Ionic Polymer Actuator Using Output Feedback,” J. of Intell. Mater. Syst. and Struct., Vol. 18, No. 3, pp. 219–234, 2007.

    Article  Google Scholar 

  81. Mallavarapu, K. and Leo, D. J., “Feedback Control of the Bending Response of Ionic Polymer Actuators,” J. of Intell. Mater. Syst. and Struct., Vol. 12, No. 3, pp. 143–155, 2001.

    Article  Google Scholar 

  82. Mallavarapu, K., Newbury, K. and Leo, D. J., “Feedback Control of the Bending Response of Ionic Polymer-Metal Composite Actuators,” Proc. of SPIE, Vol. 4329, pp. 301–310, 2001.

    Article  Google Scholar 

  83. Kothera, C. S. and Leo, D. J., “Bandwidth Characterization in the Micropositioning of Ionic Polymer Actuators,” J. of Intell. Mater. Syst. and Struct., Vol. 16, No. 1, pp. 3–13, 2005.

    Article  Google Scholar 

  84. Richardson, R. C., Levesley, M. C., Brown, M. D., Hawkes, J. A., Watterson, K. and Walker, P. G., “Control of Ionic Polymer Metal Composites,” IEEE/ASME Transactions on Mechatronics, Vol. 8, No. 2, pp. 245–253, 2003.

    Article  Google Scholar 

  85. Punning, A., Kruusmaa, M. and Aabloo, A., “A self-sensing ion conducting polymer metal composite (IPMC) actuator,” Sens. Actuators A: Physical, Vol. 136, No. 2, pp. 656–664, 2007.

    Article  Google Scholar 

  86. Hunt, A., Chen, Z., Tan, X. and Kruusmaa, M., “Control of an Inverted Pendulum Using an Ionic Polymer-Metal Composite Actuator,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 163–168, 2010.

  87. Peng, H. M., Ding, Q. J., Hui, Y., Li, H. F. and Zhao, C. S., “Three nonlinear performance relationships in the start-up state of IPMC strips based on finite element analysis,” Smart Mater. Struct., Vol. 19, No. 3, Paper No. 035014, 2010.

  88. Bar-Cohen, Y., Leary, S., Yavrouian, A., Oguro, K., Tadokoro, S. T., Harrison, J. S. and Su, J., “Challenges to the application of IPMC as actuators of planetary mechanisms,” Proc. of SPIE’s 7th Annual International Symposium on Smart Structures and Materials, Vol. 3987, pp. 140–146, 2000.

    Google Scholar 

  89. Bar-Cohen, Y., Xue, T., Shahinpoor, M., Simpson, J. O. and Smith, J., “Low-mass muscle actuators using electroactive polymers (EAP),” Proc. of SPIE’s 5th Annual International Symposium on Smart Structures and Materials, Paper No. 3324-32, 1998.

  90. Chew, X. J., Van den Hurk, A. and Aw, K. C., “Characterisation of ionic polymer metallic composites as sensors in robotic finger joints,” Int. J. Biomechatronics Biomed. Robot., Vol. 1, No. 1, pp. 37–43, 2009.

    Article  Google Scholar 

  91. Lumia, R. and Shahinpoor, M., “Microgripper design using electroactive polymers,” Proc. of SPIE, Vol. 3669, pp. 322–329, 1999.

    Article  Google Scholar 

  92. Lee, S. and Kim, K. J., “Design of IPMC actuator-driven valve-less micropump and its flow rate estimation at low Reynolds numbers,” Smart Mater. Struct., Vol. 15, No. 4, pp. 1103–1109, 2006.

    Article  Google Scholar 

  93. Yeom, S.-W. and Oh, I.-K., “A biomimetic jellyfish robot based on ionic polymer metal composite actuators,” Smart Mater. Struct., Vol. 18, No. 8, Paper No. 085002, 2009.

  94. Fang, B., Ju, M. and Lin, C., “A new approach to develop ionic polymer-metal composites (IPMC) actuator: Fabrication and control for active catheter systems,” Sens. Actuators A: Physical, Vol. 137, No. 2, pp. 321–329, 2007.

    Article  Google Scholar 

  95. Yun, K. and Kim, W.-J., “Microscale position control of an electroactive polymer using an anti-windup scheme,” Smart Mater. Struct., Vol. 15, No. 4, pp. 924–930, 2006.

    Article  Google Scholar 

  96. Tadokoro, S., Murakami, T., Fuji, S., Kanno, R., Hattori, M., Takamori, T. and Oguro, K., “An Elliptic Friction Drive Element Using an ICPF Actuator,” Control Systems, Vol. 17, No. 3, pp. 60–68, 1997.

    Article  Google Scholar 

  97. Tiwari, R. and Kim, K. J., “Disc-shaped ionic polymer metal composites for use in mechano-electrical applications,” Smart Mater. Struct., Vol. 19, No. 6, Paper No. 065016, 2010.

  98. Lee, G. Y., Choi, J. O., Kim, M. and Ahn, S. H., “Fabrication and reliable implementation of an ionic polymer-metal composite (IPMC) biaxial bending actuator,” Smart Mater. Struct., Vol. 20, No. 10, Paper No. 105026, 2011.

  99. Yamakita, M., Kamamichi, N., Kaneda, Y., Asaka, K. and Luo, Z.-W., “Development of artificial muscle actuator using ionic polymer with its application to biped walking robots,” Proc. of SPIE, Vol. 5051, pp. 301–308, 2003.

    Article  Google Scholar 

  100. Shahinpoor, M. and Kim, K. J., “Ionic polymer-metal composites: IV. Industrial and medical applications,” Smart Mater. Struct., Vol. 14, No. 1, pp. 197–214, 2005.

    Article  Google Scholar 

  101. Demont, M. E. and Gosline, J. M., “Mechanics of jet propulsion in the hydromedusan jellyfish, polyorchis pexicillatus: III. A natural resonating bell; the presence and importance of a resonant phenomenon in the locomotor structure,” J. Exp. Biol., Vol. 134, pp. 347–361, 1988.

    Google Scholar 

  102. Shahinpoor, M., “Ionic polymeric conductor nanocomposites (IPCNCs) as distributed nanosensors and nanoactuators,” Bioinspir. Biomim., Vol. 3, No. 3, Paper No. 035003, 2008.

  103. Kim, B., Ryu, J., Jeong, Y., Tak, Y., Kim, B. and Park, J.-O., “A Ciliary Based 8-Legged Walking Micro Robot Using Cast IPMC Actuators,” Proc. of the 2003 IEEE International Conference on Robotics and Automation, Vol. 3, pp. 2940–2945, 2003.

    Article  Google Scholar 

  104. Trivedi, D., Rahn, C., Kier, W. and Walker, I., “Soft robotics: Biological inspiration, state of the art, and future research,” Appl. Bionics Biomech., Vol. 5, No. 3, pp. 99–117, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hoon Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhandari, B., Lee, GY. & Ahn, SH. A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications. Int. J. Precis. Eng. Manuf. 13, 141–163 (2012). https://doi.org/10.1007/s12541-012-0020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-012-0020-8

Kewords

Navigation