Skip to main content
Log in

Genetically structured population and demographic history of the goldlined spinefoot Siganus guttatus in the northwestern Pacific

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Sequence variation of the mitochondrial DNA was analyzed to examine the genetic structure and demographic history of the goldlined spinefoot Siganus guttatus in the northwestern Pacific. In total, 451 nucleotide sequences spanning from the tRNAThr gene to the middle of the control region were determined from 254 specimens collected from five localities; three in the Ryukyu Islands (Okinawa, Miyako, and Ishigaki Islands), Taiwan, and Cebu Island of the Philippines; 73 variable sites and 75 haplotypes were detected. Our results showed restricted gene flow and genetic differentiation among all populations, with the exception of genetic homogeneity between the Miyako and Ishigaki populations; that is, this species will be able to cross between Miyako and Ishigaki (ca. 120 km) by the transport of pelagic larvae, and gene flow between Okinawa and Miyako/Ishigaki Islands (ca. 330–450 km) is restricted. A non-dispersal strategy will lead to restricted gene flow and genetic structuring in S. guttatus. Both the neutrality tests and the mismatch distribution indicated that S. guttatus might have been in populations at demographic equilibrium. This suggests that population range expansion may have been restricted owing to a non-dispersal strategy that may have restrained S. guttatus from demographic expansion after glaciation. The result will be of fundamental importance for resource management of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Woodland DJ (1990) Revision of the fish family Siganidae with descriptions of two new species and comments on distribution and biology. Indo Pac Fishes 19:1–136

    Google Scholar 

  2. Kanashiro K, Motonaga F, Kimura M (1999) Settlement of white-spotted spinefoot, Siganus canaliculatus (Pisces: Siganidae), in the coastal waters off Okinawa Island, Japan. Nippon Suisan Gakkaishi 65:19–25 (in Japanese)

    Article  Google Scholar 

  3. Tawada S (1988) Aigo. In: Shokita S (ed) Aquaculture in tropical areas. Midori Shobo, Tokyo, pp 111–124 (in Japanese)

    Google Scholar 

  4. Soliman V, Bobiles RU, Yamaoka K (2009) Overfishing in three siganid species (Family: Siganidae) in Lagonoy Gulf, Philippines. Kuroshio Sci 2:145–150

    Google Scholar 

  5. Iwamoto K, Takemura A, Yoshino T, Imai H (2009) Molecular ecological study of Siganus spinus and S. guttatus from Okinawan waters based on mitochondrial DNA control region sequences. J Oceanogr 65:103–112

    Article  CAS  Google Scholar 

  6. Hassan M, Harmelin-Vivien M, Bonhomme F (2003) Lessepsian invasion without bottleneck: example of two rabbitfish species (Siganus rivulatus and Siganus luridus). J Exp Mar Biol Ecol 291:219–232

    Article  Google Scholar 

  7. Magsino RM, Juinio-Meñez MA (2008) The influence of contrasting life history traits and oceanic processes on genetic structuring of rabbitfish populations Siganus argenteus and Siganus fuscescens along the eastern Philippine coasts. Mar Biol 154:519–532

    Article  Google Scholar 

  8. Ravago-Gotanco RG, Juinio-Meñez MA (2010) Phylogeography of the mottled spinefoot Siganus fuscescens: Pleistocene divergence and limited genetic connectivity across the Philippine archipelago. Mol Ecol 19:4520–4534

    Article  PubMed  CAS  Google Scholar 

  9. Meyer AE, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553

    Article  PubMed  CAS  Google Scholar 

  10. Kocher TD, Thomas WK, Meyer AE, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A 86:6196–6200

    Article  PubMed  CAS  Google Scholar 

  11. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  12. Excoffier L, Laval G, Schneider S (2005) ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  13. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  14. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    PubMed  CAS  Google Scholar 

  15. Rolf FJ (1973) Algorithm 76. Hierarchical clustering using the minimum spanning tree. Comp J 16:93–95

    Google Scholar 

  16. Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial-DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    PubMed  CAS  Google Scholar 

  17. Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583–589

    PubMed  CAS  Google Scholar 

  18. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  19. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  CAS  Google Scholar 

  20. Li WH (1977) Distribution of nucleotide differences between two randomly chosen cistrons in a finite population. Genetics 85:331–337

    PubMed  CAS  Google Scholar 

  21. Harpending RC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600

    PubMed  CAS  Google Scholar 

  22. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    PubMed  CAS  Google Scholar 

  23. Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    PubMed  CAS  Google Scholar 

  24. Gaggiotti OE, Excoffier L (2000) A simple method of removing the effect of a bottleneck and unequal population sizes on pairwise genetic distances. Proc R Soc B 267:81–87

    Article  PubMed  CAS  Google Scholar 

  25. Domingues VS, Bucciarelli G, Almada VC, Bernardi G (2005) Historical colonization and demography of the Mediterranean damselfish, Chromis chromis. Mol Ecol 14:4051–4063

    Article  PubMed  Google Scholar 

  26. Santos S, Hrbek T, Farias IP, Schneider H, Sampaio I (2006) Population genetic structuring of the king weakfish, Macrodon ancylodon (Sciaenidae), in Atlantic coastal waters of South America: deep genetic divergence without morphological change. Mol Ecol 15:4361–4373

    Article  PubMed  CAS  Google Scholar 

  27. Lee WJ, Conroy J, Howell WH, Kocher TD (1995) Structure and evolution of teleost mitochondrial control regions. J Mol Evol 41:54–66

    Article  PubMed  CAS  Google Scholar 

  28. Donaldson KA, Wilson RR Jr (1999) Amphi-panamic geminates of snook (Percoidei: Centropomidae) provide a calibration of the divergence rate in the mitochondrial DNA control region of fishes. Mol Phylogenet Evol 13:208–213

    Article  PubMed  CAS  Google Scholar 

  29. Mukai T, Nakamura S, Nishida M (2009) Genetic population structure of a reef goby, Bathygobius cocosensis, in the northwestern Pacific. Ichthyol Res 56:380–387

    Article  Google Scholar 

  30. Visram S, Yang MC, Pillay RM, Said S, Henriksson O, Grahn M, Chen CA (2010) Genetic connectivity and historical demography of the blue barred parrotfish (Scarus ghobban) in the western Indian Ocean. Mar Biol 157:1475–1487

    Article  Google Scholar 

  31. DiBattista JD, Wilcox C, Craig MT, Rocha LA, Bowen BW (2011) Phylogeography of the Pacific Blueline Surgeonfish, Acanthurus nigroris, reveals high genetic connectivity and a cryptic endemic species in the Hawaiian archipelago. J Mar Biol 2011:1–17

    Google Scholar 

  32. Bernardi G, Holbrook SJ, Schmitt RJ (2001) Gene flow at three spatial scales in a coral reef fish, the three-spot dascyllus, Dascyllus trimaculatus. Mar Biol 138:457–465

    Article  CAS  Google Scholar 

  33. Juario JV, Duray MN, Dwray VM, Nacario JF, Almendras JME (1985) Breeding and Larval rearing of the rabbitfish, Siganus guttatus (Bloch). Aquaculture 44:91–101

    Article  Google Scholar 

  34. Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89:415–426

    Article  Google Scholar 

  35. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  PubMed  CAS  Google Scholar 

  36. Imbrie J, Boyle EA, Clemens SC, DuVy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, McIntyre A, Mix AC, MolWno B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1992) On the structure and origin of major glaciation cycles 1. Linear responses to Milankovitch forcing. Paleoceanography 7:701–738

    Article  Google Scholar 

  37. Lambeck K, Esat TM, Potter EK (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206

    Article  PubMed  CAS  Google Scholar 

  38. Fauvelot C, Bernardi G, Planes S (2003) Reductions in the mitochondrial DNA diversity of coral reef fish provide evidence of population bottlenecks resulting from Holocene sea-level change. Evolution 57:1571–1583

    PubMed  CAS  Google Scholar 

  39. Ujiie Y, Ujiie H, Taira A, Nakamura T, Oguri K (2003) Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21,000 years: evidence from planktonic foraminifera. Mar Micropaleontol 49:335–364

    Article  Google Scholar 

  40. Liu SYV, Kokita T, Dai CF (2008) Population genetic structure of neon damselfish (Pomacentrus coelestis) in the northwestern Pacific Ocean. Mar Biol 154:745–753

    Article  Google Scholar 

  41. Shui BN, Han ZQ, Gao TX, Miao ZQ, Yanagimoto T (2009) Mitochondrial DNA variation in the East China Sea and Yellow Sea populations of Japanese Spanish mackerel Scomberomorus niphonius. Fish Sci 75:593–600

    Article  CAS  Google Scholar 

  42. Liu JX, Gao TX, Yokogawa K, Zhang YP (2006) Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol Phylogenet Evol 39:799–811

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. T. Yoshino and Dr. K. Tachihara of the University of the Ryukyus for helpful comments. We also thank Mr. Y. Yonamine of the Yaeyama Fisheries Cooperative Association. We are grateful to Prof. S. Kitada and Ms. Y. Ito of Tokyo University of Marine Science and Technology for help with analysis, and Drs. K. Kuriiwa and S. Chiba of the National Museum of Nature and Science, and Dr. M. Aoki of Nara Woman’s University for their useful advise. This research was partly supported by a research grant from the Interdisciplinary Research Institute of Environmental Sciences, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Imai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwamoto, K., Chang, CW., Takemura, A. et al. Genetically structured population and demographic history of the goldlined spinefoot Siganus guttatus in the northwestern Pacific. Fish Sci 78, 249–257 (2012). https://doi.org/10.1007/s12562-011-0455-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-011-0455-3

Keywords

Navigation