Skip to main content

Advertisement

Log in

Dietary, Endocrine, and Metabolic Factors in the Development of Colorectal Cancer

  • Review Article
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

An Erratum to this article was published on 18 January 2012

Abstract

Introduction

Colorectal cancer is the third cause of death in industrialized countries. Genetic susceptibility and diet are determinant of cancer risk and tumor behavior. Variation in cancer incidence among and within populations with similar dietary patterns suggests that an individual response may reflect interactions with genetic factors, which may modify gene, protein, and metabolite expression patterns. Nutrigenomics, defined as the interaction between nutrition and an individual genome, will likely provide important clues about responders and non-responders to nutritional intervention.

Discussion

Epidemiological and experimental studies suggest a protective role of some normal components of daily diet (fish oil, milk, and vegetables), estrogens, and phytoestrogens in colorectal cancer. The effect of estrogen seems to be mediated by their binding to estrogen receptor beta (ER-β), one of the two estrogen receptors with high affinity for these hormones. Very recently, the demonstration of an involvement of ER-β in the development of adenomatous polyps of the colon has also been documented, suggesting the use of selective ER-β agonists in primary colorectal cancer prevention. Phytoestrogens are plant-derived compounds that structurally and functionally act as estrogen agonists in mammals. They are characterized by a higher binding affinity to ER-β as compared to estrogen receptor alpha (ER-α), the other estrogen receptor subtype. These biological characteristics explain why the administration of phytoestrogens does not produce the classical side effects associated to estrogen administration (cerebro- and cardiovascular accidents, higher incidence of endometrial and breast cancer) and makes these substances potential candidates for colorectal cancer prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  2. Flood DM, Weiss NS, Cook LS, et al. Colorectal cancer incidence in Asian migrants to the United States and their descendants. Cancer Causes Control. 2000;11:403–11.

    Article  PubMed  CAS  Google Scholar 

  3. Van Engeland M, Derks S, Smits KM, Meijer GA, Herman JG. Colorectal cancer epigenetics: complex simplicity. J Clin Oncol. 2011;29(10):1382–91.

    Article  PubMed  Google Scholar 

  4. Modan B. Role of diet in cancer etiology. Cancer. 1977;40(4 Suppl):1887–91.

    Article  PubMed  CAS  Google Scholar 

  5. Saltzstein SL, Behling CA, Savides TJ. The relation of age, race and gender to the subsite location of colorectal carcinoma. Cancer. 1998;82:1408–10.

    Article  PubMed  CAS  Google Scholar 

  6. Papaxoinis K, Triantafyllou K, Sasco AJ, Nicolopoulou-Stamati P, Ladas SD. Subsite-specific differences of estrogen receptor beta expression in the normal colonic epithelium: implications for carcinogenesis and colorectal cancer epidemiology. Eur J Gastroenterol Hepatol. 2010;22(5):614–9.

    Article  PubMed  CAS  Google Scholar 

  7. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–53.

    Article  PubMed  CAS  Google Scholar 

  8. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  9. Grady WM. Genomic instability and colon cancer. Cancer Metastasis Rev. 2004;23:11–27.

    Article  PubMed  CAS  Google Scholar 

  10. Gollin SM. Mechanisms leading to chromosomal instability. Semin Cancer Biol. 2005;15:33–42.

    Article  PubMed  CAS  Google Scholar 

  11. Boland CR, Koi M, Chang DK, et al. The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior in Lynch Syndrome: from bench to bedside. Fam Cancer. 2008;7:41–52.

    Article  PubMed  CAS  Google Scholar 

  12. De Jong AE, Morreau H, Van Puijenbroek M, et al. The role of mismatch repair gene defects in the development of adenomas in patients with HNPCC. Gastroenterology. 2004;126:2–48.

    Google Scholar 

  13. Kirchhoff T, Satagopan JM, Kauff ND, et al. Frequency of BRCA1 and BRCA2 mutations in unselected Ashkenazi Jewish patients with colorectal cancer. J Natl Cancer Inst. 2004;96:68–70.

    Article  PubMed  CAS  Google Scholar 

  14. Carethers JM. The cellular and molecular pathogenesis of colorectal cancer. Gastroenterol Clin North Am. 1996;25:737–54.

    Article  PubMed  CAS  Google Scholar 

  15. Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135(4):1079–99.

    Article  PubMed  CAS  Google Scholar 

  16. Jiricny J, Marra G. DNA repair defects in colon cancer. Curr Opin Genet Dev. 2003;13:61–9.

    Article  PubMed  CAS  Google Scholar 

  17. Martinez ME. Primary prevention of colorectal cancer: lifestyle, nutrition, exercise. Recent Results Cancer Res. 2005;166:177–211.

    Article  PubMed  CAS  Google Scholar 

  18. Davis CD, Milner JA. Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention. Mutat Res. 2004;551:51–64.

    Article  PubMed  CAS  Google Scholar 

  19. Bailey LB, Rampersaud GC, Kauwell GP. Folic acid supplements and fortification affect the risk for neural tube defects, vascular disease and cancer: evolving science. J Nutr. 2003;133:1961–8.

    Google Scholar 

  20. Williams CD, Satia JA, Adair LS, et al. Associations of red meat, fat, and protein intake with distal colorectal cancer risk. Nutr Cancer. 2010;62:701–9.

    Article  PubMed  CAS  Google Scholar 

  21. Spencer EA, Key TJ, Appleby PN, et al. Meat, poultry and fish and risk of colorectal cancer: pooled analysis of data from the UK dietary cohort consortium. Cancer Causes Control. 2010;21:1417–25.

    Article  PubMed  Google Scholar 

  22. Cross AJ, Ferrucci LM, Risch A, et al. A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer Res. 2010;70:2406–14.

    Article  PubMed  CAS  Google Scholar 

  23. Bingham SA. Diet and colorectal cancer prevention. Biochem Soc Trans. 2000;28:12–6.

    PubMed  CAS  Google Scholar 

  24. Lund EK, Fairweather-Tait SJ, Wharf SG, et al. Chronic exposure to high levels of dietary iron fortification increases lipid peroxidation in the mucosa of the rat large intestine. J Nutr. 2001;131:2928–31.

    PubMed  CAS  Google Scholar 

  25. Järvinen R, Knekt P, Hakulinen T, Aromaa A. Prospective study on milk products, calcium and cancers of the colon and rectum. Eur J Clin Nutr. 2001;55(11):1000–7.

    Article  PubMed  Google Scholar 

  26. Huncharek M, Muscat J, Kupelnick B. Colorectal cancer risk and dietary intake of calcium, vitamin D, and dairy products: a meta-analysis of 26,335 cases from 60 observational studies. Nutr Cancer. 2009;61:47–69.

    Article  PubMed  CAS  Google Scholar 

  27. Geelen A, Schouten JM, Kamphuis C, et al. Fish consumption, n-3 fatty acids, and colorectal cancer: a metaanalysis of prospective cohort studies. Am J Epidemiol. 2007;166:1116–25.

    Article  PubMed  Google Scholar 

  28. Latham P, Lund EK, Brown JC, et al. Effects of cellular redox balance on induction of apoptosis by eicosapentaenoic acid in HT29 colorectal adenocarcinoma cells and rat colon in vivo. Gut. 2001;49:97–105.

    Article  PubMed  CAS  Google Scholar 

  29. Johnson IT. Micronutrients and cancer. Proc Nutr Soc. 2004;63:587–95.

    Article  PubMed  CAS  Google Scholar 

  30. Wilkins T, Reynolds PL. Colorectal cancer: a summary of the evidence for screening and prevention. Am Fam Physician. 2008;78:1385–92.

    PubMed  Google Scholar 

  31. Lanza E, Yu B, Murphy G, Albert PS, Caan B, Marshall JR, et al. The polyp prevention trial continued follow-up study: no effect of a low-fat, high-fiber, high-fruit, and -vegetable diet on adenoma recurrence eight years after randomization. Cancer Epidemiol Biomarkers Prev. 2007;16:1745–52.

    Article  PubMed  Google Scholar 

  32. Michels KB, Giovannucci E, Chan AT, Singhania R, Fuchs CS, Willett WC. Fruit and vegetable consumption and colorectal adenomas in the Nurses’ Health Study. Cancer Res. 2006;66(7):3942–53.

    Article  PubMed  CAS  Google Scholar 

  33. Peters U, Sinha R, Chatterjee N, et al. Dietary fibre and colorectal adenoma in a colorectal cancer early detection programme. Lancet. 2003;361(9368):1491–5.

    Article  PubMed  Google Scholar 

  34. John BJ, Irukulla S, Abulafi AM, et al. Systematic review: adipose tissue, obesity and gastrointestinal diseases. Aliment Pharmacol Ther. 2006;23(11):1511–23.

    Article  PubMed  CAS  Google Scholar 

  35. Moayyedi P. The epidemiology of obesity and gastrointestinal and other diseases: an overview. Dig Dis Sci. 2008;53:2293–9.

    Article  PubMed  Google Scholar 

  36. Lukanova A, Lundin E, Zeleniuch-Jacquotte A, Muti P, Mure A, Rinaldi S, et al. Body max index, circulating levels of sex-steroid hormones, IGF-I and IGF-binding protein-3: a cross-sectional study in healthy women. Eur J Endocrinol. 2004;150:161–71.

    Article  PubMed  CAS  Google Scholar 

  37. Mark A, English MA, Kane KF, Cruickshank N, Langman MJS, Stewart PM, et al. Loss of estrogen inactivation in colonic cancer. J Clin Endocrinol Metab. 1999;84(6):2080–5.

    Article  Google Scholar 

  38. Van der Meer R, de Vries HT. Differential binding of glycine- and taurine-conjugated bile acids to insoluble calcium phosphate. Biochem J. 1985;229:265–8.

    PubMed  Google Scholar 

  39. Fedirko V, Bostick RM, Flanders WD, Long Q, Shaukat A, Rutherford RE, et al. Effects of vitamin D and calcium supplementation on markers of apoptosis in normal colon mucosa: a randomized, double-blind, placebo-controlled clinical trial. Cancer Prev Res (Phila Pa). 2009;2:213–23.

    Article  CAS  Google Scholar 

  40. Fedirko V, Bostick RM, Flanders WD, Long Q, Sidelnikov E, Shaukat A, et al. Effects of vitamin D and calcium on proliferation and differentiation in normal colon mucosa: a randomized clinical trial. Cancer Epidemiol Biomarkers Prev. 2009;1:200–5.

    Google Scholar 

  41. Martinez ME, Willett WC. Calcium, vitamin D, and colorectal cancer: a review of the epidemiologic evidence. Cancer Epidemiol Biomarkers Prev. 1998;7:163–8.

    PubMed  CAS  Google Scholar 

  42. Grau MV, Baron JA, Sandler RS, Haile RW, Beach ML, Church TR, et al. Vitamin D, calcium supplementation, and colorectal adenomas: results of a randomized trial. J Natl Cancer Inst. 2003;95:1765–71.

    Article  PubMed  CAS  Google Scholar 

  43. Otani T, Iwasaki M, Sasazuki S, Inoue M, Tsugane S. Plasma vitamin D and risk of colorectal cancer: the Japan Public Health Center-Based Prospective Study. Br J Cancer. 2007;97:446–51.

    Article  PubMed  CAS  Google Scholar 

  44. Wactawski-Wende J, Kotchen JM, Anderson GL, Assaf AR, Brunner RL, O’Sullivan MJ, et al. Calcium plus vitamin D supplementation and the risk of colorectal cancer. N Engl J Med. 2006;354:684–96.

    Article  PubMed  CAS  Google Scholar 

  45. Fernandez E, La Vecchia C, D’Avanzo B, Franceschi S, Negri E, Parazzini F. Oral contraceptives, hormone replacement therapy and risk of colorectal cancer. Br J Cancer. 1996;73(11):1431–5.

    Article  PubMed  CAS  Google Scholar 

  46. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, et al. Risk and benefit estrogen plus progestin in health postmenopausal women: principal results from the Women’s Health initiative randomized controlled trial. JAMA. 2002;288(3):321–33.

    Article  PubMed  CAS  Google Scholar 

  47. Newcomb PA, Storer BE. Postmenopausal hormone replacement therapy: scientific review. JAMA. 2002;110(11):219–27.

    Google Scholar 

  48. Di Leo A, Barone M, Maiorano E, Tanzi S, Piscitelli D, Marangi S, et al. ER-beta expression in large bowel adenomas: implications in colon carcinogenesis. Dig Liv Dis. 2008;40(4):260–6.

    Article  Google Scholar 

  49. Barone M, Scavo MP, Papagni S, Piscitelli D, Guido R, Di Lena M, et al. Erβ expression in normal adenomatous and carcinomatous tissues of patients with familial adenomatous polyposis. Scand J Gastroenterol. 2010;45(11):1320.

    Article  PubMed  CAS  Google Scholar 

  50. Kronenberg F, Fugh-Berman A. Complementary and alternative medicine for menopausal symptoms. A review of randomized, controlled trials. Ann Intern Medicine. 2002;137(7):805–13.

    Google Scholar 

  51. Setchell KDR. Phytoestrogens: the biochemistry, physiology and implications for human health of soy isoflavones. Am J Clin Nutr. 1998;68(6 Suppl):1333s–46s.

    PubMed  CAS  Google Scholar 

  52. Kuiper GGJM, Lemmen JG, Carlsson B, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1996;139(10):4252–63.

    Article  Google Scholar 

  53. Anderson JJB, Anthony M, Messina M, Garner SC. Effect of phytoestrogens on tissues. Nutr Res Rev. 1999;12(3):75–116.

    Article  PubMed  CAS  Google Scholar 

  54. Adlerkreutz H, Mazur W, Stumpf K, et al. Foods containing phytoestrogens and cancer. Biofactors 200b. 2000;128(4):89–93.

    Article  Google Scholar 

  55. Kurzer MS, Xu X. Dietary phytoestrogens. Annu Rev Nutr. 1997;17:353–81.

    Article  PubMed  CAS  Google Scholar 

  56. Santti R, Makela S, Strauss L, et al. Phytoestrogens: potential endocrine disruptors in males. Toxicol Ind Health. 1998;14(1–2):223–37.

    PubMed  CAS  Google Scholar 

  57. Messina MJ, Loprizi CL. Soy for breast cancer survivors: a critical review of the literature. J Nutr. 2001;131(11 Suppl):3095s–108s.

    PubMed  CAS  Google Scholar 

  58. Kurzer MS. Hormonal effects of soy in premenopausal women and men. J Nutr. 2002;132(3):570s–3s.

    PubMed  Google Scholar 

  59. Matsuda H, Shimoda H, Morikawa T, Yoshikawa M. Phytoestrogens from the roots of Polygonum cuspidatum: structure requirement of hydroxyanthraquinones for estrogenic activity. Bioorg Mol Chem Lett. 2001;11(14):1839–42.

    Article  CAS  Google Scholar 

  60. Whitten PL, Naftolin F. Reproductive actions of phytoestrogens. Baillieres Clin Endocrinol Metab. 1998;12(4):667–90.

    Article  PubMed  CAS  Google Scholar 

  61. Grodstein F, Martinez ME, Platz A, Giovannucci E, et al. Postmenopausal hormone use and risk for colorectal cancer and adenoma. Ann Intern Med. 1998;128(9):705–12.

    PubMed  CAS  Google Scholar 

  62. Hoshiyama Y, Sekine T, Sasaba T. A case–control study of colorectal cancer and its relation to diet, cigarettes, and alcohol consumption in Saitama Prefecture, Japan. Tohoku J Exp Med. 1993;171(2):153–65.

    Article  PubMed  CAS  Google Scholar 

  63. Jacobson JS, Neugut AI, Garbowsky GC, Ahsan H, Waye JD, Treat MR, et al. Hormone replacement therapy is associated with lower risk of adenomatous polyps of the large bowel: the Minnesota cancer prevention research unit case control study. Cancer Epidem Biom Prev. 1996;5(10):779–84.

    Google Scholar 

  64. Peipins A, Newman B, Sandler RS. Use of exogenous hormones and risk of colorectal adenomas. Cancer Epidem Biom Prev. 1997;6(4):671–5.

    CAS  Google Scholar 

  65. Weyant MJ, Carothers AM, Mahmoud NN, et al. Reciprocal expression of ERalpha and ERb is associated with estrogen-mediated modulation of intestinal tumorigenesis. Cancer Res. 2001;6(1):2547–51.

    Google Scholar 

  66. Theodoratou E, Kyle J, Cetnarskyj R, Farrington SM, Tenesa A, et al. Dietary flavonoids and the risk of colorectal cancer. Cancer Epidem Biom Prev. 2007;16(4):684–93.

    Article  CAS  Google Scholar 

  67. Manno M, Cotterchio M, Boucher B, Gallinger S, et al. Dietary phytoestrogen intake is associated with reduced colorectal cancer risk. J Nutr. 2006;136(12):3046–53.

    PubMed  Google Scholar 

  68. Axelson M, Sjövall J, Gustafsson BE, Setchell KD. Origin of lignans in mammals and identification of a precursor from plants. Nature. 1982;298(5875):659–60.

    Article  PubMed  CAS  Google Scholar 

  69. Kuijsten A, Arts ICW, Holmann PCH, van’t Veer P, Kampman E. Plasma enterolignans are associated with lower colorectal adenoma risk. Cancer Epidem Biom Prev. 2006;15(6):1132–6.

    Article  CAS  Google Scholar 

  70. Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science. 1990;247:322–4.

    Article  PubMed  CAS  Google Scholar 

  71. Javid HS, Moran AE, Carothers AM, et al. Modulation of tumor formation and intestinal cell migration by estrogens in the Apc Min/+ mouse model of colorectal cancer. Carcinogenesis. 2005;26(3):587–95.

    Article  PubMed  CAS  Google Scholar 

  72. Wuttke-Seidlova D, Becker T, Cristoffel V, Jarry H, Wuttke W. Silymarin is a selective estrogen receptor beta (ER beta) agonist and has estrogenic effects in the metaphysis of the femur but no antiestrogenic effects in the uterus of ovariectomized rats. J Steroid Biochem Mole Biol. 2003;86(1):179–88.

    Article  Google Scholar 

  73. Khono H, Tanaka T, Kawabata K, Hirose Y, Sugie S, et al. Silymarin, a naturally occurring polyphenolic antioxidant flavonoid, inhibits azoxymethane-induced colon carcinogenesis in male F344 rats. Int J Cancer. 2002;101(5):461–8.

    Article  Google Scholar 

  74. Barone M, Tanzi S, Lofano K, Scavo MP, Pricci M, Demarinis L, et al. Dietary-induced ERbeta upregulation counteracts intestinal neoplasia development in intact male ApcMin/+ mice. Carcinogenesis. 2010;31(2):269–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Di Leo.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12029-011-9359-9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barone, M., Lofano, K., De Tullio, N. et al. Dietary, Endocrine, and Metabolic Factors in the Development of Colorectal Cancer. J Gastrointest Canc 43, 13–19 (2012). https://doi.org/10.1007/s12029-011-9332-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-011-9332-7

Keywords

Navigation