Skip to main content
Log in

A land data assimilation system using the MODIS-derived land data and its application to numerical weather prediction in East Asia

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Land Data Assimilation Systems have been developed to generate the surface initial conditions such as soil moisture and temperature for better prediction of weather and climate. We have constructed Korea Land Data Assimilation System (KLDAS) based on an uncoupled land surface modeling framework that integrates high-resolution in-situ observation, satellite data, land surface information from the WRF Preprocessing System (WPS) and the MODIS land products over the East Asia. To present better surface conditions, the KLDAS is driven by atmospheric forcing data from the in-situ rainfall gauges and satellite. In this study, we 1) briefly introduce the KLDAS, 2) evaluate the meteorological states near the surface and the surface fluxes reproduced by the KLDAS against the in-situ observation, and then 3) examine the performance of the mesoscale model initialized by the KLDAS. We have generated a 5-year, 10 km, hourly atmospheric forcing dataset for use in KLDAS operating across East Asia. The KLDAS has effectively reproduced the observed patterns of soil moisture, soil temperature, and surface fluxes. Further scrutiny reveals that the numerical simulations incorporating the KLDAS outputs show better agreement in both the simulated near-surface conditions and rainfall distribution over the Korean Peninsula, compared to those without the KLDAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, G., R. Leuning, M. Clark, and A. Pitman, 2008: Evaluating the performance of land surface models. J. Climate, 21, 5468–5481. Doi:10.1175/2008JCLI2378.1.

    Article  Google Scholar 

  • Avissar, R., and Pielke, R. A., 1989: A parameterization of heterogeneous land surface for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev., 117, 2113–2136.

    Article  Google Scholar 

  • Baldocchi, D. D., and Coauthors, 2001: FluxNet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 2415–2424.

    Article  Google Scholar 

  • Case, J. L., W. L. Crosson, S. V. Kumar, W. M. Lapenta, and C. D. Peters-Lidard, 2008: Impacts of high-resolution land surface initialization on regional sensible weather forecasts from the WRF model, J. Hydrometeor., 9, 1249–1266.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.

    Article  Google Scholar 

  • ____, K. Mitchell, J. Schaake, Y. Xue, H.-L. Pan, V. Koren, Q. Y. Duan, M. Ek, and A. Betts, 1996: Modeling of land-surface evaporation by four schemes and comparison with FIFE observation. J. Geophys. Res., 101(D3), 7251–7268, doi:10.1029/95JD02165.

    Article  Google Scholar 

  • ____, and Coauthors, 2007: Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J Appi. Meteor. Climatol., 46, 649–713.

    Google Scholar 

  • Cosgrove, B. A., and Coauthors, 2003a: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108(D22), 8842, doi:10.1029/2002JD003118.

    Article  Google Scholar 

  • ____, and Coauthors, 2003b: Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 108(D22), 8845, doi:10.1029/2002JD003316.

    Article  Google Scholar 

  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 1013–1023.

    Article  Google Scholar 

  • de Goncalves, L. G. G., W. J. Shuttleworth, E. J. Burke, P. Houser, D. L. Toll, M. Rodell, and K. Arsenault, 2006: Toward a South America Land Data Assimilation System: Aspects of land surface model spin-up using the Simplified Simple Biosphere. J. Geophys. Res., 111, D17110, doi:10.1029/2005JD006297.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Ek, M. B., K.E. Mitchell, and Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Ganyo, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys., Res., 108(D22), 8851, doi:10.1029/2002JD003296.

    Article  Google Scholar 

  • Gutman, G., and A. Ignatov, 1998: The derivation of green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19(8), 1533–1543, doi:10.1080/014311698215333.

    Article  Google Scholar 

  • Holt, T. R., D. Niyogi, F. Chen, K. Manning, M. A. LeMone, and A. Qureshi, 2006: Effect of land-atmosphere interactions on the IHOP 24–25 May 2002 convection case, Mon. Wea. Rev., 134, 113–133.

    Article  Google Scholar 

  • Hong, J., and J. Kim, 2010: Numerical study of surface energy partitioning on the Tibetan Plateau: Comparative analysis of two biosphere models. Biogeosci., 7, 557–568.

    Article  Google Scholar 

  • Hong, S., V. Lakshmi, E. E. Small, F. Chen, M. Tewari, and K. W. Manning, 2009: Effects of vegetation and soil moisture on the simulated surface processes from the coupled WRF/Noah model. J, Geophys. Res., 114, D18118, doi:10.1029/2008JD011249.

    Article  Google Scholar 

  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc. 42, 129–151.

    Google Scholar 

  • ____, Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.

    Article  Google Scholar 

  • Jedlovec, G. J., and K. Law, 2003: GORE cloud detection at the Global Hydrology and Climate Center. Preprints, 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc. CD-ROM, P1.21.

  • Kim, J., and Coauthors, 2006: HydroKorea and CarboKorea: Cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea. Ecological Research, 21, 881–889.

    Article  Google Scholar 

  • Kim, J.-E., and S.-Y. Hong, 2007: Impact of soil moisture anomalies on summer rainfall over East Asia: A regional climate model study. J. Climate, 20, 5732–5743.

    Article  Google Scholar 

  • Koster, R. D., and M. J. Suarez, 2003: Impact of land surface initialization on seasonal precipitation and temperature prediction. J. Hydrometeor., 4, 408–423.

    Article  Google Scholar 

  • ____, and Coauthors, 2004: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5, 1049–1063.

    Article  Google Scholar 

  • Kumar, S. V., and Coauthors, 2006: Land Information System: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 1402–1415.

    Article  Google Scholar 

  • Li, Z, and A. Trishchenko, 1999: A study toward an improved understanding of the relationship between visible and shortwave albedo measurements. J. Atmos. Oceanic Technol., 16, 347–360.

    Article  Google Scholar 

  • ____, H. G. Leighton, K. Masuda, and T. Takashima, 1993: Estimation of SW flux absorbed at the surface from TOA reflected flux. J. Climate, 6, 317–330.

    Article  Google Scholar 

  • Miller, J., M. Barlage, X. Zeng, H. Wei, K. Mitchell, and D. Tarpley, 2006: Sensitivity of the NCEP/Noah land surface model to the MODIS green vegetation fraction data set. Geophys. Res. Lett., 33, L13404, doi: 10.1029/2006GL026636.

    Article  Google Scholar 

  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.

    Article  Google Scholar 

  • Mu, Q., F. A. Heinsch, M. Zhao, S. W. Running, 2007: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519–536, doi:10.1016/j.rse.2007.04.015.

    Article  Google Scholar 

  • Myneni, R. B., and Coauthors, 2002: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ., 83, 214–231.

    Article  Google Scholar 

  • Oncley, S. P, and J. Dudhia, 1995: Evaluation of surface fluxes from MM5 using observations. Mon. Wea. Rev., 123, 3344–3357.

    Article  Google Scholar 

  • Rha, D.-K., M.-S. Suh, C.-H. Kwak, and J.-H. Kang, 2008: Impacts of an improved land cover map over South Korea on the simulated surface variables in MM5. Asia-Pacific J. Atmos. Sci., 44, 313–323.

    Google Scholar 

  • Rodell, M., P. R. Houser, A. A. Berg, and J. S. Famiglietti, 2005: Evaluation of 10 methods for initializing a land surface model. J. Hydrometeor., 6, 146–155.

    Article  Google Scholar 

  • ____, and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381–394, 2004.

    Article  Google Scholar 

  • Sellers, P. J., and Coauthors, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9, 676–705.

    Article  Google Scholar 

  • Strahler, A., D. Muchoney, J. Borak, M. Friedl, S. Gopal, E. Lambin, and A. Moody, 1999: MODIS land cover product algorithm theoretical basis document (ATBD) Version 5.0, Available online at: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod12.pdf last visited on February 9th 2012.

  • Willmott, C. J., C. M. Rowe, and W. D. Philpot, 1985: Small-scale climate maps: a sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. Amer. Cartogr., 12, 5–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Jin Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, YJ., Byun, KY., Lee, TY. et al. A land data assimilation system using the MODIS-derived land data and its application to numerical weather prediction in East Asia. Asia-Pacific J Atmos Sci 48, 83–95 (2012). https://doi.org/10.1007/s13143-012-0008-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-012-0008-4

Key words

Navigation