Skip to main content
Log in

Runaway events dominate the heavy tail of citation distributions

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Statistical distributions with heavy tails are ubiquitous in natural and social phenomena. Since the entries in heavy tail have unproportional significance, the knowledge of its exact shape is very important. Citations of scientific papers form one of the best-known heavy tail distributions. Even in this case there is a considerable debate whether citation distribution follows the log-normal or power-law fit. The goal of our study is to solve this debate by measuring citation distribution for a very large and homogeneous data. We measured citation distribution for 418, 438 Physics papers published in 1980–1989 and cited by 2008. While the log-normal fit deviates too strong from the data, the discrete power-law function with the exponent γ = 3.15 does better and fits 99.955% of the data. However, the extreme tail of the distribution deviates upward even from the power-law fit and exhibits a dramatic “runaway” behavior. The onset of the runaway regime is revealed macroscopically as the paper garners 1000-1500 citations, however the microscopic measurements of autocorrelation in citation rates are able to predict this behavior in advance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E.J. Newman, Contemporary Phys. 46, 323 (2005)

    Article  ADS  Google Scholar 

  2. D. de Solla Price, Science 149, 510 (1965)

    Article  ADS  Google Scholar 

  3. D. de Solla Price, J. Am. Soc. for Inform Sci. 27, 292 (1976)

    Article  Google Scholar 

  4. S. Redner, Eur. Phys. J. B 4, 131 (1998)

    Article  ADS  Google Scholar 

  5. S. Lehmann, B. Lautrup, A.D. Jackson, Phys. Rev. E 68, 026113 (2003)

    Article  ADS  Google Scholar 

  6. K. Borner, J.T. Maru, R.L. Goldstone, Proc. Natl. Acad. Sci. USA 101, 5266 (2004)

    Article  ADS  Google Scholar 

  7. A.F.J. van Raan, Scientometrics 63, 549 (2005)

    Article  Google Scholar 

  8. M.E.J. Newman, Eur. Phys. Lett., 86, 68001 (2009)

    Article  ADS  Google Scholar 

  9. G.J. Peterson, S. Presse, K.A. Dill, Proc. Natl. Acad. Sci. USA 107, 16023 (2010)

    Article  ADS  Google Scholar 

  10. M.L. Wallace, V. Lariviere, Y. Gingras, J. Informetr. 3, 296 (2009)

    Article  Google Scholar 

  11. J.C. Phillips (2009) Topology and the Web of Twentieth Century Science, http://arxiv.org/abs/0909.5363v1

  12. J. Laherrere, D. Sornette, Eur. Phys. J. B 2, 525 (1998)

    Article  ADS  Google Scholar 

  13. S. Redner, Physics Today 58, 49 (2005)

    Article  Google Scholar 

  14. M.J. Stringer, M. Sales-Pardo, L.A.N. Amaral, PLoS ONE 3, e1683 (2008)

    Article  ADS  Google Scholar 

  15. F. Radicchi, S. Fortunato, C. Castellano, Proc. Natl. Acad. Sci. USA 105, 17268 (2008)

    Article  ADS  Google Scholar 

  16. A.M. Petersen, F. Wang, H.E. Stanley, Phys. Rev. E 81, 036114 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Q.L. Burrell, Scientometrics 64, 247 (2005)

    Article  Google Scholar 

  19. J. Mingers, Q.L. Burrell, Inform. Proc. Managem. 42, 1451 (2006)

    Article  Google Scholar 

  20. W. Glanzel, J. Informetr. 1, 92 (2007)

    Article  Google Scholar 

  21. A.F.G. van Raan, Physica A 298, 530 (2001)

    Article  ADS  MATH  Google Scholar 

  22. C. Tsallis, M.P. de Albuquerque, Eur. J. Phys. B 13, 777 (2000)

    Article  ADS  Google Scholar 

  23. L. Egghe, R. Rousseau, Progr. Nat. Sci. 13, 478 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Blank, S. Solomon, Physica A 287, 279 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  25. O. Malcai, O. Biham, S. Solomon, Phys. Rev. E 60, 1299 (1999)

    Article  ADS  Google Scholar 

  26. O.S. Klass, O. Biham, M. Levy, O. Malcai, S. Solomon, Eur. Phys. J. B 55, 143 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. R. Albert, A.L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. P.L. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000)

    Article  ADS  Google Scholar 

  29. S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000)

    Article  ADS  Google Scholar 

  30. M. Levy, S. Solomon, Int. J. Mod. Phys. C 7, 65 (1996)

    Article  ADS  Google Scholar 

  31. Z.F. Huang, S. Solomon, Physica A 294, 503 (2001)

    Article  ADS  MATH  Google Scholar 

  32. Y. Louzoun, S. Solomon, Physica A 302, 220 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. C. Cattuto, V. Loreto, V.D.P. Servedio, Europhys. Lett. 76, 208 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  34. G. Yaari, S. Solomon, K. Rakocy, A. Nowak, Eur. Phys. J. B 62, 505 (2008)

    Article  ADS  Google Scholar 

  35. D. Challet, S. Solomon, G. Yaari, Economics 3, 1 (2009)

    Google Scholar 

  36. Y. Dover, S. Moulet, S. Solomon, G. Yaari, Risk Decisions Anal. 1, 171 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Solomon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golosovsky, M., Solomon, S. Runaway events dominate the heavy tail of citation distributions. Eur. Phys. J. Spec. Top. 205, 303–311 (2012). https://doi.org/10.1140/epjst/e2012-01576-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2012-01576-4

Keywords

Navigation