Skip to main content

Advertisement

Log in

MET and VEGF: synergistic targets in castration-resistant prostate cancer

  • Educational Series / Blue Series
  • Molecular and Cellular Biology of Cancer
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Recent advances in the treatment of prostate cancer have resulted in improved outcomes, including longer survival, but new options are needed for treating patients with castration-resistant disease, particularly in the presence of bone metastasis. Data from preclinical models and clinical biomarker studies indicate that antiangiogenic agents should be a promising treatment for this patient population, and multiple agents in this class have demonstrated activity in early-stage clinical trials. Pivotal trials in prostate cancer with agents targeting vascular endothelial growth factor (VEGF) signalling have resulted in significant improvements in tumour response and progression-free survival. However, overall survival was not significantly improved. Recent preclinical studies suggest that the limited impact on overall survival may result from the development of evasive resistance after inhibition of angiogenesis, possibly through upregulation of MET (hepatocyte growth factor receptor) signalling. MET plays important roles in angiogenesis, tumour cell invasion and bone metastasis, all of which are key factors in castration-resistant prostate cancer. Inhibition of both the MET and VEGF pathways may improve the efficacy of angiogenesis inhibitors in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Cancer Society (ACS) (2010) Cancer facts and figures 2010. American Cancer Society, Atlanta, GA

    Google Scholar 

  2. Leo S, Accettura C, Lorusso V (2011) Castrationresistant prostate cancer: targeted therapies. Chemotherapy 57:115–127

    Article  PubMed  CAS  Google Scholar 

  3. Scher HI, Halabi S, Tannock I et al (2008) Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 26:1148–1159

    Article  PubMed  Google Scholar 

  4. Ruch JM, Hussain MH (2011) Evolving therapeutic paradigms for advanced prostate cancer. Oncology (Williston Park) 25:496–504, 508

    Google Scholar 

  5. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3: 401–410

    Article  PubMed  CAS  Google Scholar 

  6. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  7. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  8. Ferrer FA, Miller LJ, Andrawis RI et al (1997) Vascular endothelial growth factor (VEGF) expression in human prostate cancer: in situ and in vitro expression of VEGF by human prostate cancer cells. J Urol 157:2329–2333

    Article  PubMed  CAS  Google Scholar 

  9. Duque JL, Loughlin KR, Adam RM et al (1999) Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer. Urology 54:523–527

    Article  PubMed  CAS  Google Scholar 

  10. Weidner N, Carroll PR, Flax J et al (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143:401–409

    PubMed  CAS  Google Scholar 

  11. Gettman MT, Pacelli A, Slezak J et al (1999) Role of microvessel density in predicting recurrence in pathologic stage T3 prostatic adenocarcinoma. Urology 54:479–485

    Article  PubMed  CAS  Google Scholar 

  12. Bok RA, Halabi S, Fei DT et al (2001) Vascular endothelial growth factor and basic fibroblast growth factor urine levels as predictors of outcome in hormone-refractory prostate cancer patients: a cancer and leukemia group B study. Cancer Res 61:2533–2536

    PubMed  CAS  Google Scholar 

  13. George DJ, Halabi S, Shepard TF et al (2001) Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res 7:1932–1936

    PubMed  CAS  Google Scholar 

  14. De Lorenzo G, Figg WD, Fossa SD et al (2008) Combination of bevacizumab and docetaxel in docetaxel-pretreated hormone-refractory prostate cancer: A Phase 2 Study. European Urology 54:1089–1096

    Article  PubMed  Google Scholar 

  15. Steinbild S, Mross K, Frost A et al (2007) A clinical phase II study with sorafenib in patients with progressive hormone-refractory prostate cancer: a study of the CESAR Central European Society for Anticancer Drug Research-EWIV. Br J Cancer 97:1480–1485

    Article  PubMed  CAS  Google Scholar 

  16. Dahut WL, Scripture C, Posadas E et al (2008) A phase II clinical trial of sorafenib in androgenindependent prostate cancer. Clin Cancer Res 14:209–214

    Article  PubMed  CAS  Google Scholar 

  17. Adelberg D, Karakunnel JJ, Gulley JL et al (2010) A phase II study of cediranib in post-docetaxel, castration-resistant prostate cancer (CRPC). 2010 ASCO Genitourinary Cancer Symposium, abstr 63

  18. Michaelson MD, Regan MM, Oh WK et al (2009) Phase II study of sunitinib in men with advanced prostate cancer. Ann Oncol 20:913–920

    Article  PubMed  Google Scholar 

  19. Sonpavde G, Periman PO, Bernold D et al (2010) Sunitinib malate for metastatic castration-resistant prostate cancer following docetaxel-based chemotherapy. Ann Oncol 21:319–324

    Article  PubMed  CAS  Google Scholar 

  20. Ryan CJ, Stadler WM, Roth B et al (2007) Phase I dose escalation and pharmacokinetic study of AZD2171, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinase, in patients with hormone refractory prostate cancer (HRPC). Invest New Drugs 25:445–451

    Article  PubMed  CAS  Google Scholar 

  21. Kelly WK, Halabi S, Carducci MA et al (2010) A randomized, double-blind, placebo-controlled phase III trial comparing docetaxel, prednisone, and placebo with docetaxel, prednisone, and bevacizumab in men with metastatic castration-resistant prostate cancer (mCRPC): survival results of CALGB 90401. J Clin Oncol 28[suppl 18]:abstr LBA4511

  22. Michaelson MD, Oudard S, Ou Y et al (2011) Randomized placebo-controlled, phase III trial of sunitinib in combination with prednisone (SU+P) versus prednisone (P) alone in men with progressive metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 29[suppl 15]:4515

    Google Scholar 

  23. Ebos JM, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8:210–221. Erratum in 8:316; 8:221

    Article  PubMed  CAS  Google Scholar 

  24. Burger RA, Brady MF, Bookman MA et al (2010) Phase III trial of bevacizumab (BEV) in the primary treatment of advanced epithelial ovarian cancer (EOC), primary peritoneal cancer (PPC), or fallopian tube cancer (FTC): a Gynecologic Oncology Group study. J Clin Oncol 28[suppl 18]:abstr LBA1

  25. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  26. Motzer RJ, Hutson TE, Tomczak P et al (2009) Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 27: 3584–3590

    Article  PubMed  CAS  Google Scholar 

  27. Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    Article  PubMed  CAS  Google Scholar 

  28. Gerstner ER, Chen PJ, Wen PY et al (2010) Infiltrative patterns of glioblastoma spread detected via diffusion MRI after treatment with cediranib. Neuro Oncol 12:466–472

    PubMed  CAS  Google Scholar 

  29. de Groot JF, Fuller G, Kumar AJ et al (2010) Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol 12:233–242

    PubMed  Google Scholar 

  30. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  PubMed  CAS  Google Scholar 

  31. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  32. Ebos JM, Lee CR, Cruz-Munoz W et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    Article  PubMed  CAS  Google Scholar 

  33. Pàez-Ribes M, Allen E, Hudock J et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    Article  PubMed  Google Scholar 

  34. di Tomaso E, Snuderl M, Kamoun WS et al (2011) Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape. Cancer Res 71:19–28

    Article  PubMed  Google Scholar 

  35. Sennino B, Naylor RM, Tabruyn SP et al (2009) Reduction of tumor invasiveness and metastasis and prolongation of survival of RIP-Tag2 mice after inhibition of VEGFR plus c-Met by XL184. Mol Cancer Ther 8[suppl 1]:A13

    Google Scholar 

  36. You WK, Sennino B, Williamson CW et al (2011) VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer. Cancer Res 71:4758–4768

    Article  PubMed  CAS  Google Scholar 

  37. Christensen JG, Burrows J, Salgia R (2005) c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett 225:1–26

    Article  PubMed  CAS  Google Scholar 

  38. You WK, McDonald DM (2008) The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Rep 41:833–839

    Article  PubMed  CAS  Google Scholar 

  39. Cecchi F, Rabe DC, Bottaro DP (2010) Targeting the HGF/Met signalling pathway in cancer. Eur J Cancer 46:1260–1270

    Article  PubMed  CAS  Google Scholar 

  40. Pennacchietti S, Michieli P, Galluzzo M et al (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–346

    Article  PubMed  Google Scholar 

  41. Kitajima Y, Ide T, Ohtsuka T, Miyazaki K (2008) Induction of hepatocyte growth factor activator gene expression under hypoxia activates the hepatocyte growth factor/c-Met system via hypoxia inducible factor-1 in pancreatic cancer. Cancer Sci 99:1341–1347

    Article  PubMed  CAS  Google Scholar 

  42. Shojaei F, Lee JH, Simmons BH et al (2010) HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res 70: 10090–10100

    Article  PubMed  CAS  Google Scholar 

  43. Nakashiro K, Hayashi Y, Oyasu R (2003) Immunohistochemical expression of hepatocyte growth factor and c-Met/HGF receptor in benign and malignant human prostate tissue. Oncol Rep 10:1149–1153

    PubMed  CAS  Google Scholar 

  44. Pisters LL, Troncoso P, Zhau HE et al (1995) cmet proto-oncogene expression in benign and malignant human prostate tissues. J Urol 154:293–298

    Article  PubMed  CAS  Google Scholar 

  45. Zhu X, Humphrey PA (2000) Overexpression and regulation of expression of scatter factor/ hepatocyte growth factor in prostatic carcinoma. Urology 56:1071–1074

    Article  PubMed  CAS  Google Scholar 

  46. Humphrey PA, Zhu X, Zarnegar R et al (1995) Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am J Pathol 147: 386–396

    PubMed  CAS  Google Scholar 

  47. Knudsen BS, Gmyrek GA, Inra J et al (2002) High expression of the Met receptor in prostate cancer metastasis to bone. Urology 60:1113–1117

    Article  PubMed  Google Scholar 

  48. Zhang S, Zhau HE, Osunkoya AO et al (2010) Vascular endothelial growth factor regulates myeloid cell leukemia-1 expression through neuropilin-1-dependent activation of c-MET signaling in human prostate cancer cells. Mol Cancer 9:9

    Article  PubMed  Google Scholar 

  49. Humphrey PA, Halabi S, Picus J et al (2006) Prognostic significance of plasma scatter factor/hepatocyte growth factor levels in patients with metastatic hormone-refractory prostate can cer: results from cancer and leukemia group B 150005/9480. Clin Genitourin Cancer 4:269–274

    Article  PubMed  CAS  Google Scholar 

  50. Sirotnak FM, She Y, Khokhar NZ et al (2004) Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events. Mol Carcinog 41:150–163

    Article  PubMed  CAS  Google Scholar 

  51. Verras M, Lee J, Xue H et al (2007) The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res 67:967–975

    Article  PubMed  CAS  Google Scholar 

  52. Maeda A, Nakashiro K, Hara S et al (2006) Inactivation of AR activates HGF/c-Met system in human prostatic carcinoma cells. Biochem Biophys Res Commun 347:1158–1165

    Article  PubMed  CAS  Google Scholar 

  53. Pfeiffer MJ, Smit FP, Sedelaar JP, Schalken JA (2011) Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer. Mol Med 17:657–664

    Article  PubMed  CAS  Google Scholar 

  54. Morrissey C, Vassella RL (2007) The role of tumor microenvironment in prostate cancer bone metastasis. J Cell Biochem 101:873–886

    Article  PubMed  CAS  Google Scholar 

  55. Cook RJ, Coleman R, Brown J et al (2006) Markers of bone metabolism and survival in men with hormone-refractory metastatic prostate cancer. Clin Cancer Res 12(11 Pt 1):3361–3367

    Article  PubMed  CAS  Google Scholar 

  56. Leonardi R, Caltabiano R, Loreto C (2010) The immunolocalization and possible role of c-Met (MET, hepatic growth factor receptor) in the developing human fetal mandibular condyle. Acta Histochem 112:482–488

    Article  PubMed  CAS  Google Scholar 

  57. Inaba M, Koyama H, Hino M et al (1993) Regulation of release of hepatocyte growth factor from human promyelocytic leukemia cells, HL-60, by 1,25-dihydroxyvitamin D3, 12-O-tetradecanoylphorbol 13-acetate, and dibutyryl cyclic adenosine monophosphate. Blood 82:53–59

    PubMed  CAS  Google Scholar 

  58. Grano M, Galimi F, Zambonin G et al (1996) Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro. Proc Natl Acad Sci U S A 93:7644–7648

    Article  PubMed  CAS  Google Scholar 

  59. Standal T, Abildgaard N, Fagerli UM et al (2007) HGF inhibits BMP-induced osteoblastogenesis: possible implications for the bone disease of multiple myeloma. Blood 109:3024–3030

    PubMed  CAS  Google Scholar 

  60. Reichert JC, Quent VM, Burke LJ et al (2010) Mineralized human primary osteoblast matrices as a model system to analyse interactions of prostate cancer cells with the bone microenvironment. Biomaterials 31:7928–7936

    Article  PubMed  CAS  Google Scholar 

  61. Ono K, Kamiya S, Akatsu T et al (2006) Involvement of hepatocyte growth factor in the development of bone metastasis of a mouse mammary cancer cell line, BALB/c-MC. Bone 39:27–34

    Article  PubMed  CAS  Google Scholar 

  62. Street J, Bao M, deGuzman L et al (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 99:9656–9661

    Article  PubMed  CAS  Google Scholar 

  63. Zelzer E, Olsen BR (2005) Multiple roles of vascular endothelial growth factor (VEGF) in skeletal development, growth, and repair. Curr Top Dev Biol 65:169–687

    Article  PubMed  CAS  Google Scholar 

  64. Dai J, Kitagawa Y, Zhang J et al (2004) Vascular endothelial growth factor contributes to the prostate cancer-induced osteoblast differentiation mediated by bone morphogenetic protein. Cancer Res 64:994–999

    Article  PubMed  CAS  Google Scholar 

  65. Jacobsen KA, Al-Aql ZS, Wan C et al (2008) Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res 23:596–609

    Article  PubMed  CAS  Google Scholar 

  66. Niida S, Kaku M, Amano H et al (1999) Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med 190: 293–298

    Article  PubMed  CAS  Google Scholar 

  67. Beamer B, Hettrich C, Lane J (2009) Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing. HSS J 6:85–94

    Article  Google Scholar 

  68. Schipani E, Maes C, Carmeliet G, Semenza GL (2009) Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 24:1347–1353

    Article  PubMed  CAS  Google Scholar 

  69. Yap TA, Olmos D, Brunetto AT et al (2011) Phase I trial of a selective c-MET inhibitor ARQ 197 incorporating proof of mechanism pharmacodynamic studies. J Clin Oncol 29:1271–1279

    Article  PubMed  CAS  Google Scholar 

  70. Mekhail T, Rich T, Rosen L et al (2009) Final results: a dose escalation phase I study of ARQ 197, a selective c-Met inhibitor, in patients with metastatic solid tumors. J Clin Oncol 27[suppl 15]:3548

    Google Scholar 

  71. Hussain M, Smith MR, Sweeney C et al (2011) Cabozantinib (XL184) in metastatic castrationresistant prostate cancer (mCRPC): results from a phase II randomized discontinuation trial. J Clin Oncol 29[suppl 15]:abstr 4516

    Google Scholar 

  72. Smith DC, Smith MR, Small EJ et al (2011) Phase 2 study of cabozantinib (XL184) in a cohort of patients with castration-resistant prostate cancer (CRPC) and measurable soft tissue disease. Poster presented at: 2011 ASCO Genitourinary Symposium, 17–19 February 2011, Orlando, FL, Abstract 127

  73. Amgen, Inc. (2000) AMG 102 in combination with mitoxantrone and prednisone in subjects with previously treated castrate resistant prostate cancer. In: ClinicalTrials.gov [Internet]. National Library of Medicine (US), Bethesda, MD. [cited 2011 Aug [23]. Available from: http://clinicaltrials.gov/show/ NCT00770848 NLM Identifier: NCT00770848

  74. Amgen, Inc. (2011) Amgen outlines strategy, growth objectives and capital allocation plans. April 21. Web, August 23, 2011. http://www.amgen.com/media/media_pr_detail.jsp?year=2011&releaseID=1553298

  75. Smith DC, Dunn RL, Strawderman MS, Pienta KJ (1998) Change in serum prostate-specific antigen as a marker of response to cytotoxic therapy for hormone-refractory prostate cancer. J Clin Oncol 16:1835–1843

    PubMed  CAS  Google Scholar 

  76. Armstrong AJ, Garrett-Mayer E, Ou Yang YC et al (2007) Prostate-specific antigen and pain surrogacy analysis in metastatic hormone-refractory prostate cancer. J Clin Oncol 25:3965–3970

    Article  PubMed  Google Scholar 

  77. Hussain M, Goldman B, Tangen C et al (2009) Prostate-specific antigen progression predicts overall survival in patients with metastatic prostate cancer: data from Southwest Oncology Group trials 9346 (Intergroup Study 0162) and 9916. J Clin Oncol 27:2450–2456

    Article  PubMed  Google Scholar 

  78. Aragon-Ching JB, Jain L, Gulley JL et al (2009) Final analysis of a phase II trial using sorafenib for metastatic castration-resistant prostate cancer. BJU Int 103:1636–1640

    Article  PubMed  CAS  Google Scholar 

  79. Chi KN, Ellard SL, Hotte SJ et al (2008) A phase II study of sorafenib in patients with chemo-naive castration-resistant prostate cancer. Ann Oncol 19:746–751

    Article  PubMed  CAS  Google Scholar 

  80. Li Y, Sikes RA, Malaeb BS et al (2010) Osteoblasts can stimulate prostate cancer growth and transcriptionally down-regulate PSA expression in cell line models. Urol Oncol (in press)

  81. Sabbatini P, Larson SM, Kremer A et al (1999) Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. J Clin Oncol 17:948–957

    PubMed  CAS  Google Scholar 

  82. Morris MJ, Jia X, Larson SM et al (2008) Posttreatment serial bone scan index (BSI) as an outcome measure predicting survival. Poster presented at: 2008 ASCO Genitourinary Symposium, 14–16 February 2008, San Francisco, CA, abstract 188

  83. Scher HI, Warren M, Heller G (2007) The association between measures of progression and survival in castrate-metastatic prostate cancer. Clin Cancer Res 13:1488–1492

    Article  PubMed  CAS  Google Scholar 

  84. Scher HI, Mazumdar M, Kelly WK (1996) Clinical trials in relapsed prostate cancer: defining the target. J Natl Cancer Inst 88:1623–1634

    Article  PubMed  CAS  Google Scholar 

  85. Erdi YE, Humm JL, Imbriaco et al (1997) Quantitative bone metastases analysis based on image segmentation. J Nucl Med 38:1401–1406

    PubMed  CAS  Google Scholar 

  86. Sadik M, Jakobsson D, Olofsson F et al (2006) A new computer-based decision-support system for the interpretation of bone scans. Nucl Med Commun 27:417–423

    Article  PubMed  Google Scholar 

  87. Danila DC, Heller G, Gignac GA et al (2007) Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res 13:7053–7058

    Article  PubMed  CAS  Google Scholar 

  88. Morgan TM, Lange PH, Porter MP et al (2009) Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res 15:677–683

    Article  PubMed  CAS  Google Scholar 

  89. de Bono JS, Scher HI, Montgomery RB et al (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14:6302–6309

    Article  PubMed  Google Scholar 

  90. Olmos D, Arkenau HT, Ang JE et al (2009) Circulating tumour cell (CTC) counts as intermediate end points in castration-resistant prostate cancer (CRPC): a single-centre experience. Ann Oncol 20:27–33

    Article  PubMed  CAS  Google Scholar 

  91. Scher HI, Jia X, de Bono JS et al (2009) Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol 10:233–239

    Article  PubMed  CAS  Google Scholar 

  92. Scher HI, Heller G, Molina A et al (2011) Evaluation of circulating tumor cell (CTC) enumeration as an efficacy response biomarker of overall survival (OS) in metastatic castration-resistant prostate cancer (mCRPC): planned final analysis (FA) of COU-AA-301, a randomized double-blind, placebo-controlled phase III study of abiraterone acetate (AA) plus low-dose prednisone (P) post docetaxel. J Clin Oncol 29[suppl 18]:abstr LBA4517

  93. Danila DC, Fleisher M, Scher HI (2011) Circulating tumor cells as biomarkers in prostate cancer. Clin Cancer Res 17:3903–3912

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana T. Aftab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aftab, D.T., McDonald, D.M. MET and VEGF: synergistic targets in castration-resistant prostate cancer. Clin Transl Oncol 13, 703–709 (2011). https://doi.org/10.1007/s12094-011-0719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-011-0719-5

Keywords

Navigation