Skip to main content

Advertisement

Log in

Solar Activity, Lightning and Climate

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The physics of solar forcing of the climate and long term climate change is summarized, and the role of energetic charged particles (including cosmic rays) on cloud formation and their effect on climate is examined. It is considered that the cosmic ray-cloud cover hypothesis is not supported by presently available data and further investigations (during Forbush decreases and at other times) should be analyzed to further examine the hypothesis. Another player in climate is lightning through the production of NOx; this greenhouse gas, water vapour in the troposphere (and stratosphere) and carbon dioxide influence the global temperature through different processes. The enhancement of aerosol concentrations and their distribution in the troposphere also affect the climate and may result in enhanced lightning activity. Finally, the roles of atmospheric conductivity on the electrical activity of thunderstorms and lightning discharges in relation to climate are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Altaratz O, Koren I, Yair Y, Price C (2010) Lightning response to smoke from Amazonian fires. Geophys Res Lett 37(L07801):1–6. doi:10.1029/2010GL042679

    Google Scholar 

  • Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Shilva-Dias MAF(2004) Smoking rain clouds over the Amazon. Science 303:1337–1342. doi:10.1126/Scienc.1092779

    Google Scholar 

  • Aniol R (1952) Schwankungen der Gewitterhaufigkeit in Suddeutschland. Meteorologische Rundschau 3(4):55–56

    Google Scholar 

  • Armstrong WC (1987) Lightning triggered from the Earth’s magnetosphere as the source of synchronized whistlers. Nature 327:405–408

    Google Scholar 

  • Arnold NF, Robinson TR (2001) Solar magnetic flux influences on the dynamics of the winter middle atmosphere. Geophys Res Lett 28:2381–2384

    Google Scholar 

  • Austin J, Shindell D, Beagley SR, Brühl C, Dameris M, Manzini E, Nagashima T, Newman P, Pawson S, Pitari G, Rozanov E, Schnadt C, Shepherd TG (2003) Uncertainties and assessments of chemistry-climate models of the stratosphere. Atmos Chem Phys 3:1–27

    Google Scholar 

  • Baker MB, Christian HJ, Latham J (1995) A computational study of the relationships linking lightning frequency and other thundercloud parameters. Q J R Meteorol Soc 121:1525–1548

    Google Scholar 

  • Baker MB, Blyth AM, Christian HJ, Latham J, Miller KL, Gadian AM (1999) Relationships between lightning activity and various thundercloud parameters: satellite and modeling studies. Atmos Res 51:221–236. doi:10.1016/S0169-8095(99)00009-5

    Google Scholar 

  • Balachandran NK, Rind D (1995) Modeling the Effects of UV Variability and the QBO on the troposphere-stratosphere system 1. The middle atmosphere. J Clim 8:2058–2079

    Google Scholar 

  • Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota I, Horinouchi T, Jones DBA, Kinnersley JS, Marquardt C, Sato K, Takahashi M (2001) The quasi biennial oscillation. Rev Geophys 39:179–229. doi:10.1029/1999RG000073

    Google Scholar 

  • Beard KV, Ochs HT III, Twohy CH (2004) Aircraft measurements of high average charges on cloud drops in layer clouds. Geophys Res Lett 31:L14111. doi:10.1029/2004GL020465

    Google Scholar 

  • Beer J, Joos Ch F, Lukasczyk Ch, Mende W, Siegenthaler U, Stellmacher R (1994) 10Be as an indicator of solar variability and climate. In: Nesme-Ribes E (ed) The solar engine and its influence on terrestrial atmosphere and climate. ENATO ASI Series 25, pp 221–233

  • Benestad RE, Schmidt GA (2009) Solar trends and global warming. J Geophys Res 114:D14101. doi:10.1029/2008JD011639

    Google Scholar 

  • Bennett AJ, Harrison RG (2009) Evidence for global circuit current flow through water droplet layers. J Atmos Solar Terr Phys 71:1219–1221. doi:10.1016/j.jastp.2009.04.011

    Google Scholar 

  • Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (1984) Milankovitch and Climate, in NATO ASI, series, 126. D Reidel Publishing Company, Dordrecht, pp 895

  • Berger A, Loutre MF, Crucifi M (2003) The Earth’s climate in the next hundred thousand years (100 kyr). Surv Geophys 24:117–138

    Google Scholar 

  • Blanchard DC (1963) The electrification of the atmosphere by particles from bubbles in the sea. Prog Oceanogr 1:71–202

    Google Scholar 

  • Boccippio DJ (2001) Lightning scaling relations revisited. J Atmos Sci 59:1086–1104

    Google Scholar 

  • Boeck WL, Suszcynsky DM, Light TE, Jacobson AR, Christian HJ, Goodman SJ, Buechler DE, Guillen JLL (2004) A demonstration of the capabilities of multi satellite observations of oceanic lightning. J Geophys Res 109:D17204. doi:10.1029/2003JD004491

    Google Scholar 

  • Bond DW, Steiger S, Zhang R, Tie X, Orville RE (2002) The importance of NOx production by lightning in the tropics. Atmos Environ 36:1509–1519

    Google Scholar 

  • Bondiou-Clergerie A, Lalande P, Roux F (2004) ORAGES a dedicated sensor for detection, localization and fine analysis of lightning flashes from space. Acta Astronautica 55:245–254

    Google Scholar 

  • Brasseur G, Schultz M, Granier C, Saunois M, Diehl T, Botzlet M, Roeckner E, Walters S (2006) Impact of climate change on the future chemical composition of the global troposphere. J Climate 19:3932–3951. doi:10.1175/JCLI3832.1

    Google Scholar 

  • Brooks CEP (1934) The variation of the annual frequency of thunderstorms in relation to sunspots. Q J Royal Met Soc 60:153–165

    Google Scholar 

  • Bucha V, Bucha V Jr (1998) Geomagnetic forcing of changes in climate and in the atmospheric Circulation. J Atmos Solar Terr Phys 60:145–169

    Google Scholar 

  • Cahalan RF, Wen GY, Harder JW, Pilewskie P (2010) Temperature responses to spectral solar variability on decadal time scales. Geophys Res Lett 37:L07705. doi:10.1029/2010GL044571

    Google Scholar 

  • Callis LB, Natarajan M, Lambeth J (2000) Calculated upper stratospheric effects of solar UV flux and NOy variations during the 11-year solar cycle. Geophys Res Lett 27:3869–3872

    Google Scholar 

  • Callis LB, Natarajan M, Lambeth J (2001) Solar-atmospheric coupling by electrons (SOLACE): 3. Comparisons of simulations, observations, 1979–1997, issues and implications. J Geophys Res 106:7523–7539

    Google Scholar 

  • Calogovic J, Albert C, Arnold F, Beer J, Desorgher L, Flueckiger EO (2010) Sudden cosmic ray decreases: No change of global cloud cover. Geophys Res Lett 37:L03802. doi:10.1029/2009GL041327

    Google Scholar 

  • Camp CD, Tung KK (2007) The influence of the solar cycle and QBO on the late winter stratospheric polar vortex. J Atmos Sci 64:1267–1283

    Google Scholar 

  • Carey LD, Buffalo KM (2007) Environmental control of cloud-to-ground lightning polarity in severe storms. Mon Wea Rev 135:1327–1353

    Google Scholar 

  • Carslaw KS (2009) Cosmic rays, clouds and climate. Nature 460:332–333

    Google Scholar 

  • Carslaw KS, Harrison RG, Kirkby J (2002) Cosmic rays, clouds and climate. Science 298:1732–1737

    Google Scholar 

  • Chilingarian A, Daryan A, Arakelyan K, Reymers A, Melkumyan L (2009) Thunderstorm correlated enhancements of cosmic ray fluxes detected at Mt. Aragats. In: Chilingarian A (ed) Proc. of Int. Symp. FORGES 2008, Nor-Amberd, Armenia, p 121

  • Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WJ, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the optical transient detector. J Geophys Res 108. doi:10.1029/2002JD002347

  • Christiansen F, Haigh JD, Lundstedt H (2007) Influence of solar activity cycles on Earth’s climate. Final report task 700—summary report, conclusions and recommendations, ESTEC Contract no. 18453/04/NL/AR Issue 1, September 4, 2007, Danish National Space Center Scientific Report 2/2007, ISBN-10: 87-91694-12-4, ISBN-13: 978-87-91694-12-7

  • Chronis T, Anagnostou E, Dinku T (2004) High frequency estimation of thunderstorms via satellite infrared and a long-range lightning network in Europe. Q Royal Meteo Soc 130: April issue Part B No. 599

  • Chubenko AP, Amurina IV, Antonova VP, Kokobaev MM, Kryukov SV, Nam RA, Nesterova NM, Oskomov VV, Piscal VV, Ptitsyn MO, Sadykov TKh, Shepetov AL, Vildanova LI, Zybin KP, Gurevichet AV (2003) Effective growth of a number of cosmic ray electrons inside thundercloud. Phys Lett A 309:90–102. doi:10.1016/S0375-9601(03)00062-8

    Google Scholar 

  • Chubenko AP, Karashtin AN, Ryabov VA, Shepetov AL, Antonova VP, Kryukov SV, Mitko GG, Naumov AS, Pavljuchenko LV, Ptitsyn MO, SYa Shalamova, YuV Shlyugaev, Vildanova LI, Zybin KP, Gurevich AV (2009) Energy spectrum of lightning gamma emission. Phys Lett A 373:2953–2958. doi:10.1016/j.physleta.2009.06.031

    Google Scholar 

  • Crooks SA, Gray LJ (2005) Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset. J Clim 18:996–1015

    Google Scholar 

  • Damon PE, Jirikowic JL (1992) The Sun as a low-frequency harmonic oscillator. Radiocarbon 34(2):199–205

    Google Scholar 

  • Davidi A, Koren I, Remer L (2009) Direct measurements of the effect of biomass burning over the Amazon on the atmospheric temperature profile. Atmos Chem Phys 9:8211–8221

    Google Scholar 

  • Del Genio AD, Mao-Sung Y, Jonas J (2007) Will moist convection be stronger in a warmer climate? Geophys Res Lett 34:L16703. doi:10.1029/2007GL030525

    Google Scholar 

  • Delmonte B, Petit JR, Krinner G, Maggi V, Jouzel J, Udisti R (2005) Ice core evidence for secular variability and 200-year dipolar oscillations in atmospheric circulation over East Antarctica during Holocene. Clim Dyn 24. doi:10.1007/s00382-005-0012-9

  • Denton G, Karlen W (1973) Holocene climate variations: their pattern and possible cause. Quat Res 3(2):155–205

    Google Scholar 

  • Dickinson RE (1975) Solar variability and the lower atmosphere. Bull Am Meteor Soc 56:1240–1248

    Google Scholar 

  • Doherty RM, Stevenson DS, Johnson CE, Collins WJ, Sanderson MG (2006) Tropospheric ozone and El Niño–Southern Oscillation: Influence of atmospheric dynamics, biomass burning emissions, and future climate change. J Geophys Res 111:D19304. doi:10.1029/2005JD006849

    Google Scholar 

  • Duplissy J, Enghoff MB, Aplin KL, Arnold F, Aufmhoff H, Avngaard M, Baltensperger U, Bondo T, Bingham R, Carslaw K, Curtius J, David A, Fastrup B, Gagné S, Hahn F, Harrison RG, Kellett B, Kirkby J, Kulmala M, Laakso L, Laaksonen A, Lillestol E, Lockwood M, Mäkelä J, Makhmutov V, Marsh ND, Nieminen T, Onnela A, Pedersen E, Pedersen JOP, Polny J, Reichl U, Seinfeld JH, Sipilä M, Stozhkov Y, Stratmann F, Svensmark H, Svensmark J, Veenhof R, Verheggen B, Viisanen Y, Wagner PE, Wehrle G, Weingartner E, Wex H, Wilhelmsson M, Winkler PM (2010) Results from the CERN pilot CLOUD experiment. Atmos Chem Phys 10:1635–1647

    Google Scholar 

  • Dwyer JR, Smith DM (2005) A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations. Geophys Res Lett 32:L22804. doi:10.1029/2005GL023848

    Google Scholar 

  • Dwyer JR, Rassoul HK, Saleh Z, Uman MA, Jerauld J, Plumer JA (2005) X-ray bursts produced by laboratory sparks in air. Geophys Res Lett 32:L20809. doi:10.1029/2005GL024027

    Google Scholar 

  • Dwyer JR, Coleman LM, Lopez R, Saleh Z, Concha D, Brown M, Rassoul HK (2006) Runaway breakdown in the Jovian atmospheres. Geophys Res Lett 33:L22813. doi:10.1029/2006GL027633

    Google Scholar 

  • Eack KB, Beasley WH, Rust WD, Marshall TC, Stolzenburg M (1996) Initial results from simultaneous observation of X rays and electric fields in a thunderstorm. J Geophys Res 101(D23):29637–29640. doi:10.1029/96JD01705

    Google Scholar 

  • Easterling DR, Wehner MF (2009) Is the climate warming or cooling? Geophys Res Lett 36:L08706. doi:10.1029/2009GL037810

    Google Scholar 

  • Eddy JA (1976) The maunder minimum. Science 192:1189–1202

    Google Scholar 

  • Ehhalt DH, Rohrer F (1994) The impact of commercial aircraft on tropospheric ozone. In: Brandy AR (ed) The chemistry of the atmosphere—oxidants and oxidation in the earth’s atmosphere, 7th BOC priestley conference. Lewisburg, Pennsylvania, pp 105–120. Woodhead Publishing Limited, ISBN 1 85573 798 1, Cambridge

  • Enell C-F, Arnone E, Adachi T, Chanrion O, Verronen PT, Seppala A, Neuber T, Ulich T, Turunen E, Takahashi Y, R-Rl Hsu (2008) Parameterization of the chemical effect of sprites in the middle atmosphere. Ann Geophys 26:13–27

    Google Scholar 

  • Erlykin AD, Sloan T, Wolfendale AW (2009a) The search for cosmic ray effects in the clouds. J Atmos Solar Terr Phys 71:955–958

    Google Scholar 

  • Erlykin AD, Sloan T, Wolfendale AW (2009b) Solar activity and the mean global temperature. Environ Res Lett 4:014006. doi:10.1088/1748-9326/4/1/014006

    Google Scholar 

  • Erlykin AD, Parsons RD, Wolfendale AWW (2009c) Possible cosmic ray signatures in clouds? J Phys G Nucl Part Phys 36:115202

    Google Scholar 

  • Erlykin AD, Gyalai G, Kudela K, Sloan T, Wolfendale AW (2009d) On the correlation between cosmic ray intensity and cloud cover. J Atmos Solar Terr Phys 71:1794. doi:10.1016/j.jastp.2009.06.012

    Google Scholar 

  • Evan A, Heidinger T, Andrew K, Vimont DJ (2007) Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys Res Lett 34:L04701. doi:10.1029/2006GL028083

    Google Scholar 

  • Eyers CJ, Addleton D, Atkinson K, Broomhead MJ, Christou R, Elliff T, Falk R, Gee I, Lee DS, Marizy C, Michot S, Middel J, Newton P, Norman P, Plohr M, Raper D, Stanciou N (2005) AERO2K global aviation emissions inventories for 2002 and 2025, QINETIQ for European commission under contract No. G4RD-CT-2000-00382, Farnborough, Hampshire, GU14 0LX

  • Fadnavis S, Devendraa Siingh, Singh RP (2009) The mesospheric inversion layers and sprites. J Geophys Res 114:D23307. doi:10.1029/2009JD011913

    Google Scholar 

  • Fairbridge RW (1967) Encyclopedia of atmospheric sciences and astrogeology. In Fairbridge RW(ed) Encyclopedia of earth sciences series, vol 2. Reinhold, New York

  • Farrell WM, Desch MD (2002) Solar proton events and the fair weather electric field at ground. Geophys Res Lett 29(9):1323–1326

    Google Scholar 

  • Foukal P, North G, Wigley T (2004) A stellar view on solar variations and climate. Science 306:68–69

    Google Scholar 

  • Frame T, Gray LJ (2010) The 11-year solar cycle in ERA-40 data: an update to 2008. J Clim 23:2213–2222

    Google Scholar 

  • Frick P, Galyagin D, Hoyt DV, Nesme-Ribes E, Schatten KH, Sokoloff D, Zakharov V (1997) Wavelet analysis of solar activity recorded by sunspot groups. Astron Astrophys 328:670–681

    Google Scholar 

  • Friis-Christensen E, Lassen K (1991) Length of the solar-cycle - an indicator of solar-activity closely associated with climate. Science 254(5032):698–700

    Google Scholar 

  • Fritz H (1878) Die wichtigsten periodischen Erscheinungen der Meteorologie und Kosmologie. In: Natuurkundige Verhandelingen van de Hollandsche Maatschappij der Wetenschappen te Haarlem, Deel III, Haarlem

  • Fröhlich C (2006) Solar irradiance iariability since 1978: revision of the PMOD composite during solar cycle 21. Space Sci Rev 125:53–65. doi:10.1007/s11214-006-9046-5

    Google Scholar 

  • Fröhlich C, Lean J (1998) The sun’s total irradiance: cycles, trends and related climate change uncertainties since 1976. Geophys Res Lett 25:4377–4380

    Google Scholar 

  • Fullekrug M, Fraser-Smith AC (1996) Further evidence for a global correlation of the Earth-ionosphere cavity resonances. Geophys Res Lett 23:2773–2776

    Google Scholar 

  • Futyan JM, Del Genio AD (2007) Relationships between lightning and properties of convective cloud clusters. Geophys Phys Lett 34:L15705. doi:10.1029/2007GL030227

    Google Scholar 

  • Galloway JM, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland C, Green P, Holland E, Karl DM, Michaels AF, Porter JH, Townsend A, Vörösmarty C (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226

    Google Scholar 

  • Ganguly ND (2010) Influence of solar proton events during the declining phase of solar cycle 23 on the total ozone concentration in India. Int J Remote Sens 31(2):313–322

    Google Scholar 

  • Gleisner H, Thejll P (2003) Patterns of tropospheric response to solar variability. Geophys Res Lett 30:1711. doi:10.1029/2003GL017129

    Google Scholar 

  • Gopalswamy N (2004) A global picture of CMEs in the inner heliosphere. In: Poletto G, Suess ST (eds) The sun and the heliosphere as an integrated system, vol 317 of Astrophysics and Space Science Library. Kluwer, Dordrecht, pp 201–251

    Google Scholar 

  • Gordillio-Vazquez FJ (2008) Air plasma kinetics under the influence of sprites. J Phys D Appl Phys 41(234016):33. doi:10.1088/0022-3727/41/23/234016

    Google Scholar 

  • Granier C, Artaxo P, Reeves CE (eds) (2004) Emissions of atmospheric trace compounds. Kluwer Acad. Publ., Dordrecht, p 546 pp

    Google Scholar 

  • Gray LJ, Haigh JD, Harrison RG (2005) A review of the influence of solar changes on the Earth’s climate. Hadley Centre technical note 62, The UK Met Office

  • Gray LJ, Rumbold S, Shine KP (2009) Stratospheric temperature and radiative forcing response to 11-year solar cycle changes in irradiance and ozone. J Atmos Sci 66:2402–2417

    Google Scholar 

  • Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, van Geel B, White W (2010) Solar influences on climate. Rev Geophys 48:RG4001. doi:10.1029/2009RG000282

  • Grenfell JL, Shindell DT, Grewe V (2003) Sensitivity studies of oxidative changes in the troposphere in 2010 using the GISS GCM. Atmos Chem Phys 3:1267–1283

    Google Scholar 

  • Grewe V (2007) Impact of climate variability on tropospheric ozone. Sci Total Environ 374:167–181. doi:10.1016/j.scitotenv.2007.01.032

    Google Scholar 

  • Gungle B, Krider EP (2006) Cloud-to-ground lightning and surface rainfall in warm-season Florida thunderstorms. J Geophys Res 111:D19203. doi:10.1029/2005JD006802

    Google Scholar 

  • Gurevich AV, Zybin KP (2001) Runaway breakdown and electric discharges in thunderstorms. Phys Uspekhi 44:1119

    Google Scholar 

  • Gurevich AV, Zybin KP (2005) Runaway breakdown and the Mysteries of lightning. Phys Today 58(5). doi:10.1063/1.1995746

  • Gurevich AV, Mitko GG, Antonova VP, Chubenko AP, Karashtin AN, Kryukov SV, Naumov AS, Pavljuchenko LV, Ptitsyn MO, Ryabov VA, Shalamova SYa, Shepetov AL, Shlyugaev VYu, Vildanova LI, Zybin KP (2009a) An intracloud discharge caused by extensive atmospheric shower. Phys Lett 373:3550–3553. doi:10.1016/j.physleta.2009.07.085

    Google Scholar 

  • Gurevich AV, Karashtin AN, Ryabov VA, Chubenko AP, Shepetov AL (2009b) Non-linear phenomena in ionosphere plasma. The influence of cosmic rays and the runaway electron breakdown on the thunderstorm discharges. Phys Uspekhi 179:779 (in Russian)

    Google Scholar 

  • Haigh JD (2003) The effects of solar variability on the Earth’s climate. Phil Trans Roy Soc A 361:95–111

    Google Scholar 

  • Haigh JD, Blackburn M, Day R (2005) The response of tropospheric circulation to perturbations in lower stratospheric temperature. J Clim 18:3672–3691

    Google Scholar 

  • Haigh JD, Winning AR, Toumi R, Harder JW (2010) An influence of solar spectral variations on radiative forcing of climate. Nature 467:696–699. doi:10.1038/nature09426

    Google Scholar 

  • Hansen J, Lacis A, Rind D, Russell G, Stone P, Fung I, Ruedy R, Lerner J (1984) Climate sensitivity: analysis of feedback mechanisms. Clim Process Clim Sensit 5:130–163

    Google Scholar 

  • Hansen J, Andrew L, Reto R, Makiko S (1992) Potential climate impact of Mount Pinatubo eruption. Geophys Res Lett 19:215–218

    Google Scholar 

  • Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas V, Perlwitz Ja, Perlwitz Ju, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcing. J Geophys Res 110:D18104. doi:10.1029/2005JD005776

    Google Scholar 

  • Hanslmeier A (2007) The sun and space weather, 2nd edn. Springer, New York

  • Harder JW, Fontenla JM, Pilewskie P, Richard EC, Woods TN (2009) Trends in solar spectral irradiance variability in the visible and infrared. Geophys Res Lett 36:L07801. doi:10.1029/2008GL036797

    Google Scholar 

  • Harrison RG, Ambaum MHP (2008) Enhancement of cloud formation by droplet charging. Proc Roy Soc A 464:2561–2573. doi:10.1098/rspa.2008.0009

    Google Scholar 

  • Harrison RG, Ambaum MHP (2010) Observing Forbush decreases in cloud at Shetland. J Atmos Solar Terr Phys 72:1408–1414. doi:10.1016/j.jastp.2010.09.025

    Google Scholar 

  • Harrison RG, Stephenson DB (2006) Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds. Proc Roy Soc A 462. doi:10.1098/rspa.2005.1628

  • Harrison RG, Usoskin I (2010) Solar modulation in surface atmospheric electricity. J Atmos Solar Terr Phys 72:176–182. doi:10.1016/j.jastp.2009.11.006

    Google Scholar 

  • Hill DC, Allen MR, Gillet NP, Tett SFB, Stott PA, Jones GS, Ingram WJ, Mitchell JFB (2001) Natural and anthropogenic causes of recent climate change. In: India MB, Bonillo DL (eds) Detecting and modelling regional climate change. Springer, New York, pp 275–290

  • Hofmann DJ, Oltmans SJ (1992) The effect of stratospheric water vapor on the heterogeneous reaction rate of ClONO2 and H2O for sulfuric acid aerosol. Geophys Res Lett 19(22):2211–2214

    Google Scholar 

  • Hofmann DJ, Butler JH, Tans PP (2008) A new look at atmospheric carbon dioxide. Atmos Env. doi:10.1016/j.atmosenv.2008.12.028

  • Hood L (2004) Effects of solar UV variability on the stratosphere. In: Pap J et al. (eds) Solar variability and its effect on the earth’s atmosphere and climate system, vol 14. AGU 87 Monograph Series. American Geophysical Union, Washington, DC, pp 283–303

  • Hopkins AE (2003) Lightning NOx and tropospheric ozone formation in the NASA GISS global carbon model, GSSP (Graduate Student Summer Program of the NASA Goddard Space Flight Center’s Earth-Sun Exploration Division, in collaboration with the Goddard Earth Sciences and Technology Center of the University of Maryland Baltimore County). http://gest.umbc.edu/studentopp/2003gsspreports.html

  • Howard J, Uman MA, Dwyer JR, Hill D, Biagi C, Saleh Z, Jerauld J, Rassoul HK (2008) Co-location of lightning leader X-ray and electric field change sources. Geophys Res Lett 35(13):L13817. doi:10.1029/2008GL034134

  • Hoyt DV, Schatten KH (1997) The role of the sun in climate change. Oxford University Press, New York

    Google Scholar 

  • Huntrieser H, Schlager H, Roiger A, Lichtenstern M, Schumann U, Kurz C, Brunner D, Schwierz C, Richter A, Stohl A (2007) Lightning-produced NOx over Brazil during TROCCINOX: airborne measurements in tropical and subtropical thunderstorms and the importance of mesoscale convective systems. Atmos Chem Phys 7:2987–3013

    Google Scholar 

  • Imbrie J, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, Mcintyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raytoo ME, Shackleton NJ, Toggweiler JR (1992) On the structure and origin of major glaciations cycles 1. Linear response to Milankovich forcing. Paleoceanography 7:701–738

    Google Scholar 

  • Inan US, Burgess WC, Wolf TG, Shafer DC (1988) Lightning associated precipitation of MeV electrons from inner radiation belts. Geophys Res Lett 15:172–175

    Google Scholar 

  • Inan US, Sampson WA, Taranenko YN (1996) Space-time structure of optical flashes and ionization changes produced by lightning EMP. Geophys Res Lett 23:133–136. doi:10.1029/95GL03816

    Google Scholar 

  • Inan US, Piddyachiy D, Peter WB, Sauvaud JA, Parrot M (2007) DEMETER satellite observations of lightning-induced electron precipitation. Geophys Res Lett 34:L07103. doi:10.1029/2006GL029238

    Google Scholar 

  • IPCC Climate Change (2007) The physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. ISBN 978 0521 88009-1 Hardback; 978 0521 70596-7 Paperback

  • Jackman CH, Cerniglia MC, Nielsen JE, Allen DJ, Zawodny JM, McPeters RD, Douglass AR, Rosenfield JE, Rood RB (1995) Two dimensional and three dimensional model simulations, measurements an interpretation of the influence of the October 1989 solar proton events on the middle atmosphere. J Geophys Res 100:11641–11660

    Google Scholar 

  • Jackman CH, DeLand MT, Labow GJ, Fleming EI, Lopez-Puertas M (2006) Satellite measurements of middle atmospheric impacts by solar proton events in solar cycle 23. Space Sci Rev 125:381–391

    Google Scholar 

  • Jaegle L, Jacob DJ, Brune WH, Wennberg PO (2001) Chemistry of HOx radicals in the upper troposphere. Atmos Environ 35:469–489

    Google Scholar 

  • Jayaratne ER, Saunders CPR, Hallett J (1983) Laboratory studies of the charging of soft-hail during ice crystal interactions. Q J Roy Meteor Soc 109:609–630

    Google Scholar 

  • Kandalgaonkar SS, Tinmaker MIR, Kulkarni JR, Nath AS and Kulkarni MK (2005) Spatio-temporal variability of lightning activity over the Indian region. J Geophys Res 110. doi:10.1029/2004JD005631

  • Kar SK, Liou Y-A, Ha K-J (2009) Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos Res 92:80–87. doi:10.1016/j.atmosres.2008.09.004

    Google Scholar 

  • Kazil J, Lovejoy ER, Barth MC, O’Brien K (2006) Aerosol nucleation over oceans and the role of galactic cosmic rays. Atmos Chem Phys 6:4905–4924

    Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88

    Google Scholar 

  • Kernthaler SC, Toumi R, Haigh JD (1999) Some doubts concerning a link between cosmic ray fluxes and global cloudiness. Geophys Res Lett 26(7):863–865

    Google Scholar 

  • Khain A, Rosenfeld D, Pokrovsky A (2005) Aerosol impact on the dynamics and microphysics of deep convective clouds. Q J R Meteotol Soc 131:2639–2663

    Google Scholar 

  • King JW (1975) Sun-weather relationships. Aeronaut Astronaut 13:10–19

    Google Scholar 

  • Kirkby J (2007) Cosmic rays and climate. Surv Geophys 28:333–375. doi:10.1007/s10712-008-9030-6

    Google Scholar 

  • Kniveton DR (2004) Precipitation, cloud cover and Forbush decreases in galactic cosmic rays. J Atmos Solar Terr Phys 66:1135–1142. doi:10.1016/j.jastp.2004.05.010

    Google Scholar 

  • Knox RS, Dauglass DH (2010) Recent energy balance of Earth. Int J Geosci 1:99–101. doi:10.4236/ijg.2010.13013

    Google Scholar 

  • Kodera K, Kuroda Y (2002) Dynamical response to the solar cycle: winter stratopause and lower stratosphere. J Geophys Res 107(D24):4749. doi:10.1029/2002JD002224

    Google Scholar 

  • Kodera K, Matthes K, Shibata K, Langematz U, Kuroda Y (2003) Solar impact on the lower mesospheric subtropical jet in winter: a comparative study with general circulation model simulations. Geophys Res Lett 30:1315. doi:10.1029/2002GL016124

    Google Scholar 

  • Kokorowski M, Sample JG, Holzworth RH, Bering EA, Bale SD, Blake JB, Collier AB, Hughes ARW, Lay E, Lin RP, McCarthy MP, Millan RM, Moraal H, O’Brien TP, Parks GK, Pulupa M, Reddell BD (2006) Rapid fluctuations of stratospheric electric field following a solar energetic particle event. Geophys Res Lett 33:L20105. doi:10.1029/2006GL027718

    Google Scholar 

  • Koren I, Kaufman YJ, Remer LA, Martings JV (2004) Measurment of the effect of Amazon smoke on inhibition of cloud formation. Science 303:1342–1345

    Google Scholar 

  • Koren I, Kaufman YJ, Rosenfeld D, Remer LA, Rudich Y (2005) Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys Res Lett 32:L14828. doi:10.1029/2005GL023187

    Google Scholar 

  • Koren I, Martins JV, Remer LA, Afargan H (2008) Smoke invigoration versus inhibition of clouds over the amazon. Science 321:946–949. doi:10.1126/science.1159185

    Google Scholar 

  • Kotaki M, Katoh C (1983) The global distribution of thunderstorm activity observed by the Ionospheric Sounding Satellite (ISS-b). J Atmos Terr Phys 45:843–847

    Google Scholar 

  • Kristjansson JE, Stjern CW, Stordal F, Fjraa AM, Myhre G, Jnasson K (2008) Cosmic rays, cloud condensation nuclei and clouds: a reassessment using MODIS data. Atmos Chem Phys 8:7373–7387

    Google Scholar 

  • Krivova NA, Balmaceda L, Solanki SK (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron Astrophys 467:335–346. doi:10.1051/0004-6361:20066725

    Google Scholar 

  • Kudela K, Rybak J, Anatalova A, Storini M (2002) Time evolution of low-frequency periodicities in cosmic ray intensity. Solar Physics 205:165–175

    Google Scholar 

  • Kumar PR, Kamra AK (2010) Lightning activity variation over three islands in a tropical monsoon regions. Atmos Res 98:309–316

    Google Scholar 

  • Labitzke K (1987) Sunspots, the QBO and the stratospheric temperature in the north polar region. Geophys Res Lett 14:535–537

    Google Scholar 

  • Labitzke K, Matthes K (2003) Eleven-year solar cycle variations in the atmosphere, observations, mechanisms and models. Holocene 13(3):311–317

    Google Scholar 

  • Labitzke K, van Loon H (1988) Associations between the 11-year solar cycle, the QBO and the atmosphere, part I: the troposphere and stratosphere in the northern hemisphere in winter. J Atmos Terr Phys 50:197–206

    Google Scholar 

  • Laken B, Wolfendale A, Kniveton D (2009) Cosmic ray decreases and changes in the liquid water cloud fraction over the oceans. Geophys Res Lett 36:L23803. doi:10.1029/2009GL040961

    Google Scholar 

  • Langematz U, Grenfell JL, Matthes K, Mieth P, Kunze M, Steil B, Bruhl C (2005) Chemical effects in 11-year solar cycle simulations with the Freie Universitat Berlin Climate Middle Atmosphere Model with inline chemistry (FUB-CMAM-CHEM). Geophys Res Lett 32:L13803. doi:10.1029/2005GL022686

    Google Scholar 

  • Laut P (2003) Solar activity and terrestrial climate: an analysis of some purported correlations. J Atmos Sol Terr Phys 65:801–812

    Google Scholar 

  • Lean J (2000) Evolution of the sun’s spectral irradiance since the maunder minimum. Geophys Res Lett 27:2425–2428

    Google Scholar 

  • Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35:L18701. doi:10.1029/2008GL034864

    Google Scholar 

  • Lean JL, Rind DH (2009) How will Earth’s surface temperature change in future decades? Geophys Res Lett 36:L15708. doi:10.1029/2009GL038932

  • Lean JL, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: Implications for climate change. Geophys Res Lett 22(23):3195–3198

    Google Scholar 

  • Lean JL, Wang YM, Sheeley NR Jr (2002) The effect of increasing solar activity on the Sun’s total and open magnetic flux during multiple cycles: implications for solar forcing of climate. Geophys Res Lett 29:2224. doi:10.1029/2002GL015880

    Google Scholar 

  • Lee DS, Kohler I, Grobler E, Rohrer F, Sausen R, Gallardo-Klenner L, Olivier JGJ, Dentener FJ, Bouwman AF (1997) Estimations of global NOx emissions and their uncertainties. Atmos Environ 31:1735–1749

    Google Scholar 

  • Lelieveld J, Crutzen PJ, Ramanathan V, Andreae MO, Brenninkmeijer CM, Campos T, Cass GR, Dickerson RR, Fischer H, de Gouw JA, Hansel A, Jefferson A, Kley D, de Laat AT, Lal S, Lawrence MG, Lobert JM, Mayol-Bracero OL, Mitra AP, Novakov T, Oltmans SJ, Prather KA, Reiner T, Rodhe H, Scheeren HA, Sikka D, Williams J (2001) The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 291(5506):1031–1036

    Google Scholar 

  • Levy H II (1971) Normal atmosphere: large radical and formaldehyde concentrations predicted. Science 173:141–143

    Google Scholar 

  • Lockwood M, Frohlich C (2007) Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. Proc R Soc A 463:2447–2460. doi:10.1098/rspa.2007.1880)

    Google Scholar 

  • Lockwood M, Bell C, Woollings T, Harrison RG, Gray LJ, Haigh JD (2010a) Top-down solar modulation of climate: evidence for centennial-scale change. Enviro Res Lett 5:034008. ISSN 1748-9326

    Google Scholar 

  • Lockwood M, Harrison RG, Woollings TJ, Solanki SK (2010b) Are cold winters in Europe associated with low solar activity? Environ Res Lett 5:024001. ISSN 1748-9326

    Google Scholar 

  • Logan JA (1983) Nitrogen oxides in the troposphere: global and regional budgets. J Geophys Res 88:10785–10807

    Google Scholar 

  • Lyman JM, Good SA, Gouretsk VV, Masayoshi I, Johnson GC, Palmer MD, Smith DM, Willis JK (2010) Robust warming of the global upper ocean. Nature 465:334–337

    Google Scholar 

  • MacGorman DR, Rust WD (1998) The electrical nature of storms. Oxford Univ. Press, New York

    Google Scholar 

  • Mackerras D, Darveniza M, Orville RE, Williams ER, Goodman SJ (1998) Global lightning total, cloud and ground flash estimates. J Geophys Res 103:19791–19809

    Google Scholar 

  • Markson R, Price C (1999) Ionospheric potential as a proxy index for global temperatures. Atmos Res 51:309–314. doi:10.1016/S0169-8095(99)00015-0

    Google Scholar 

  • Marsh DR, Garcia R, Kinnison D, Boville B, Sassi F, Solomon SC, Matthes K (2007) Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J Geophys Res 112:D23306. doi:10.1029/2006JD008306

    Google Scholar 

  • Marshall J, Kushner Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21(15):1863–1898

    Google Scholar 

  • Marshall TC, Stolzenburg M, Maggio CR, Coleman LM, Krehbiel PR, Hamlin T, Thomas RJ, Rison W (2005) Observed electric fields associated with lightning initiation. Geophys Res Lett 32:L03813. doi:10.1029/2004GL021802

    Google Scholar 

  • Martin RV, Sioris CE, Chance K, Ryerson TB, Bertram TH, Wooldridge PJ, Cohen RC, Neuman JA, Swanson A, Flocke FM (2006) Evaluation of space-based constraints onglobal nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America. J Geophys Res 111:D15308. doi:10.1029/2005JD006680

    Google Scholar 

  • Massie ST, Torres O, Smith SJ (2004) Total ozone mapping spectrometer (TOMS) observations of increases in Asian aerosol in winter from 1979 to 2000. J Geophys Res 109:D18211. doi:10.1029/2004JD004620

    Google Scholar 

  • Matthes K, Langematz U, Gray LL, Kodera K, Labitzke K (2004) Improved 11-year solar signal in the Freie Universitat Berlin Climate Middle Atmosphere Model (FUB-CMAM-CHEM). J Geophys Res 109. doi:10.1029/2003/D004012

  • McCracken KG, Dreschhoff GAM, Smart DF, Shea MA (2001) Solar cosmic ray events for the period 1561–1994. 2. The Gleissberg periodicity. J Geophys Res 106(A10):21599–21609

    Google Scholar 

  • Mitchell JM, Stockton C W, Meko DM (1979) Evidence of a 22-year rhythm of drought in the western United States related to the hale solar cycle since the 17th century. In: McCormac BM, Seliga TA (eds) Solar- terrestrial influences on weather and climate. D. Reidel publishing Company, Dordrecht

  • Muscheler R, Beer J, Kromer B (2003) Long-term climate variations and solar effects. In Proc., ISCS 2003 Symposium, Solar Variability as an Input for Earth’s Environment, Tatranska Lomnica, Slovakia, 23–28 June 2003, ESA SP-535, September 2003

  • Naccarato KP, Pinto Jr O, Pinto IRCA (2003) Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophys Res Lett 30(13). doi:10.1029/2003GL017496

  • Nath A, Manohar GK, Dani KK, Devera PCS (2009) A study of lightning activity over land and oceanic regions of India. J Earth System Sci 118:467–481

    Google Scholar 

  • Neher HV (1971) Cosmic rays at high latitudes and altitudes covering four solar maxima. J Geophys Res 76:1637–1651

    Google Scholar 

  • Neubert T, Rycroft M, Farges T, Blanc E, Chanrion O, Arnone E, Odzimek A, Arnold N, Enell CF, Turunen E, Bosinger T, Mika A, Haldoupis C, Steiner RJ, Vander Velde O, Soula S, Berg P, Boberg F, Thejll P, Christiansen B, Ignaccolo M, Fullekrug M, Verronen PT, Montanya J, Crosby N (2008) Recent results from studies of electric discharges in the mesosphere. Surv Geophys 29:71–137. doi:10.1007/s10712-008-9043-1

    Google Scholar 

  • Ney EP (1959) Cosmic radiation and the weather. Nature 183:451–452

    Google Scholar 

  • Nicoll KA, Harrison RG (2010) Experimental determination of layer cloud edge charging from cosmic ray ionization. Geophys Res Lett 37:L13802. doi:10.1029/2010GL043605

    Google Scholar 

  • Noble CMM, Beasley WH, Postawko SE, Light TEL (2004) Coincident observations of lightning by the FORTE photodiode detector, the New Mexico Tech Lightning Mapping Array and the NLDN during STEPS. Geophys Res Lett 31:L07106. doi:10.1029/2003GL018989

    Google Scholar 

  • North GR, Wu QG (2001) Detecting climate signals using space-time EOFs. J Clim 14(8):1839–1863

    Google Scholar 

  • Ogurtsov MG, Nagovitsyn YA, Kocharov GE, Jungner H (2002) Long-period cycles of the sun’s activity recorded in direct solar data and proxies. Solar Phys 211:371–394

    Google Scholar 

  • Olivier JGJ, Van Aardenne JA, Dentener F, Ganzeveld L, Peters JAHW (2005) Recent trends in global greenhouse gas emissions: regional trends and spatial distribution of key sources. In: van Amstel A (eds) Non-CO2 greenhouse gases (NCGG-4). Millpress, Rotterdam, pp 325–330

  • Olson JR, Crawford JH, Chen G, Brune WH, Faloona IC, Tan D, Harder H, Martinez M (2006) A reevaluation of airborne HOx observations from NASA field campaigns. J Geophys Res 111:D10301. doi:10.1029/2005JD006617

    Google Scholar 

  • Orville RE, Huffines GR, Nielsen-Gammon J, Zhang R, Ely B, Steiger S, Phillips S, Allen S, Read W (2001) Enhancement of cloud-to-ground lightning activity over Houston, Texas. Geophys Res Lett 28:2597–2600

    Google Scholar 

  • Palle Bago E, Butler CJ (2001) The influence of cosmic rays on terrestrial clouds and global warming. Astron Geophys 41:18–22

    Google Scholar 

  • Paularena KI, Szabo A, Richardson JDL (1995) 1.3-year periodicities in the ap geomagnetic index and the solar wind. Geophys Res Lett 22:3001–3003

    Google Scholar 

  • Pereira Felix B, Priyadarsini G, Girish TE (2010) A possible relationship between global warming and lightning activity in India during the period 1998–2009. arxiv.org/pdf/1012.3338

  • Petersen WA, Rutledge SA (1998) On the relationship between cloud-to-ground lightning and convective rainfall. J Geophys Res 103:14025–14040

    Google Scholar 

  • Petit J, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzmann E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostock ice core, Antarctica. Nature 399:429–436

    Google Scholar 

  • Pierce JR, Adams PJ (2009) Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophys Res Lett 36:L09820. doi:10.1029/2009GL037946

    Google Scholar 

  • Pinto O Jr, Pinto IRCA (2008) About sensitivity of cloud-to-ground lightning activity to surface air temperature changes at different time scales in the city of Sao Paulo, Brazil, 2nd International Lightning Meteorology Conference 24–25 April 2008, Tucson, Arizona, USA

  • Price C (2000) Evidence for a link between global lightning activity and upper troposphere water vapour. Nature 406:290–293

    Google Scholar 

  • Price C (2006) Global thunderstorm activity. In: Fullekrug M et al. (eds) Sprites, elves and intense lightning discharges. NATO Sciences Series, Springer, New York, pp 85–99

  • Price C (2009) Will a drier climate result in more lightning? Atmos Res 91:479–484

    Google Scholar 

  • Price C, Asfur M (2006) Can lightning observation be used as an indicator of upper tropospheric water vapour variability? BAMS—American Meteorological Society, March issues, pp 291–298

  • Price C, Federmesser B (2006) Lightning-rainfall relationships in Mediterranean winter thunderstorms. Geophys Res Lett 33:L07813. doi:10.1029/2005GL024794

    Google Scholar 

  • Price C, Rind D (1994) Possible implication of global climate change and global lightning distributions and frequencies. J Geophys Res 99:10823–10831. doi:10.1029/94JD00019

    Google Scholar 

  • Price C, Yair Y, Asfur M (2007) East African lightning as a precursor of Atlantic hurricane activity. Geophys Res Lett 34:L09805. doi:1029/2006GL028884

    Google Scholar 

  • Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation, 2nd ed. Kluwer Academic Publishers, The Netherland

  • Pudovkin MI, Babushkina SV (1992) Influence of solar flares and disturbances of interplanetary medium on the atmospheric circulation. J Atmos Terr Phys 54:841–846

    Google Scholar 

  • Randall CE, Harvey VL, Manney GL, Orsolini Y, Codrescu M, Sioris C, Brohede S, Haley C, Gordley L, Zawodny J, Russell J III (2005) Stratospheric 101 effects of energetic particle precipitation in 2003–2004. Geophys Res Lett 32:L05802. doi:10.1029/2004GL022003

    Google Scholar 

  • Randall CE, Harvey V, Singleton C, Bernath P, Boone C, Kozyra J (2006) Enhanced NOx in 2006 linked to strong upper stratospheric arctic vortex. Geophys Res Lett 33:L18811. doi:10.1029/2006GL027160

    Google Scholar 

  • Reames DV (2004) Solar energetic particle variations. Adv Space Res 34:381–390

    Google Scholar 

  • Reeve N, Toumi R (1999) Lightning activity as an indicator of climate change. Quart J Roy Met Soc 125:893–903

    Google Scholar 

  • Reid GC (1991) Solar total irradiance variations and the global sea-surface temperature record. J Geophys Res 96(D2):2835–2844

    Google Scholar 

  • Reid GC (2000) Solar variability and the Earth’s climate: introduction and overview. Space Sci Rev 94(1–2):1–11

    Google Scholar 

  • Rind D (1998) Just add water vapor. Science 281:1152–1153

    Google Scholar 

  • Rind D, Lonergan P, Balachandran NK, Shindell D (2002) 2×CO2 and solar variability influences on the troposphere through wave-mean flow interactions. J Meteorol Soc Jpn 80:863–876

    Google Scholar 

  • Rodger CJ, Clilverd MA, Thomson NR, Gamble RJ, Seppala A, Turunen E, Meredith NP, Parrot M, Sauvaud J-A, Berthelier J-J (2007) Radiation belt electron precipitation into the atmosphere: recovery from a geomagnetic storm. J Geophys Res 112:A11307. doi:10.1029/2007JA012383

    Google Scholar 

  • Rodger CJ, Seppala A, Clilverd MA (2008) Significance of transient luminous events to neutral chemistry: experimental measurements. Geophys Res Lett 35:L07803. doi:10.1029/2008GL033221

    Google Scholar 

  • Rodriguez JM, Ko MKW, Dak Sze N (1988) Antarctic chlorine chemistry—possible global implication. Geophys Res Lett 15(3):257–260

    Google Scholar 

  • Rohrer F, Berresheim H (2006) Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation. Nature 442:184–187. doi:10.1038/nature04924

    Google Scholar 

  • Rosenfeld D, Lensky IM (1998) Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull Am Meteorol Soc 79:2457–2476

    Google Scholar 

  • Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or dought: how do aerosol affect presipitation? Science 321:1309–1313

    Google Scholar 

  • Roy I, Haigh JD (2010) Solar cycle signals in sea level pressure and sea surface temperature. Atmos Chem Phys 10:3147–3153

    Google Scholar 

  • Rycroft MJ, Israelsson S, Price C (2000) The global atmospheric electric circuit, solar activity and climate change. J Atmos Solar Terr Phys 62:1563–1576. doi:10.1016/S1364-6826(00)00112-7

    Google Scholar 

  • Rycroft MJ, Odzimek A, Arnold NF, Fullekrug M, Kulak A, Neubert T (2007) New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: the role of lightning and sprites. J Atmos Sol Terr Phys 69:445–456. doi:10.1016/j.jastp.2007.09.004

    Google Scholar 

  • Rycroft MJ, Harrison RG, Nicoll KA, Mareev EA (2008) An overview of Earth’s global Electric circuit and atmospheric conductivity. Space Sci Rev 137. doi:10.1007/11214-008-9368-6

  • Sanderson MG, Collins WJ, Johnson CE, Derwent RG (2006) Present and future acid deposition to ecosystems: the effect of climate change. Atmos Environ 40:1275–1283

    Google Scholar 

  • Sato M, Takahashi Y, Yoshida A, Adachi T (2008) Global distribution of intense lightning discharges and their seasonal variations. J Phys D Appl Phys 41:234011. doi:10.1088/0022-3727/41/23/234011

    Google Scholar 

  • Sátori G, Williams ER, Lemperger I (2009) Variability of global lightning activity on the ENSO time scale. Atoms Res 91:500–509

    Google Scholar 

  • Saunders CPR (1993) Reply to comments on “The effect of liquid water on thunderstorm charging”. J Geophys Res 98:10823–10825

    Google Scholar 

  • Saunders C (2008) Charge separation mechanisms in clouds. Space Sci Rev 137:335–353. doi:10.1007/s11214-008-9345-0

    Google Scholar 

  • Scafetta N, West BJ (2006) Phenomenological solar contribution to the 1900–2000 global surface warming. Geophys Res Lett 33:L05708. doi:10.1029/2005GL025539

  • Scafetta N, West BJ (2008) Is climate sensitive to solar variability? Physics Today March 2008:50–51

    Google Scholar 

  • Schlegel K, Fullekrug M (1999) Schumann resonance parameter changes during high-energy particle precipitation. J Geophys Res 104:10111–10118

    Google Scholar 

  • Schlegel K, Diendorfer G, Thern S, Schmidt M (2001) Thunderstorms, lightning and solar activity—Middle Europe. J Atmos Solar Terr Phys 63:1705–1713

    Google Scholar 

  • Schumann U, Huntrieser H (2007) The global lightning-induced nitrogen oxides sources. Atmos Chem Phys 7:3823–3907

    Google Scholar 

  • Schwabe M (1844) Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron Nachrichten 21:233–236

    Google Scholar 

  • Sentman DD, Stenbaek-Nielsen HC, McHarg MG, Morill JC (2008) Plasma chemistry of sprite streamers. J Geophys Res 113:D11112. doi:10.1029/2007JD008941

    Google Scholar 

  • Seppala A, Verronen PT, Kyrola E, Hassinen S, Backman L, Hauchecorne A, Bertaux JL, Fussen D (2004) Solar proton events of October-November 2003: ozone depletion in the Northern Hemisphere polar winter as seen by GOMOS/Envisat. Geophys Res Lett 31:L19107. doi:10.1029/2004GL021042

    Google Scholar 

  • Seppala A, Clilverd MA, Rodger CJ (2007a) NOx enhancements in the middle atmosphere during 2003–2004 polar winter: relative significance of solar proton events and the aurora as a source. J Geophys Res 112:D23303. doi:10.1029/2006JD008326

    Google Scholar 

  • Seppala A, Verronen PT, Clilverd MA, Randall CE, Tamminen J, Sofieva V, Backman L, Kyrola E (2007b) Arctic and Antarctic polar winter NOx and energetic particle precipitation in 2002–2006. Geophys Res Lett 34:L12810. doi:10.1029/2007GL029733

    Google Scholar 

  • Shaviv NJ (2003) The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astron 8(1):39–77

    Google Scholar 

  • Shaviv NJ, Veizer J (2003) Celestial driver of Phanerozoic climate? GSA Today Geol Soc Am 7:4–10

    Google Scholar 

  • Shibata K, Deushi M (2008) Long-term variations and trends in the simulation of the middle atmosphere 1980–2004 by the chemistry-climate model of the Meteorological Research Institute. Ann Geophys 26:1299–1326

    Google Scholar 

  • Shibata K, Kodera K (2005) Simulation of radiative and dynamical responses of the middle atmosphere to the 11-year solar cycle. J Atmos Sol Terr Phys 67:125–143

    Google Scholar 

  • Shindell D, Rind D, Balachandran NK, Lean J, Lonergan P (1999) Solar cycle variability, ozone, and climate. Science 284(5412):305–308

    Google Scholar 

  • Shindell DT, Faluvegi G, Unger N, Aguilar E, Schmidt GA, Koch DM, Bauer SE, Miller RL (2006) Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI. Atmos Chem Phys 6:4427–4459

    Google Scholar 

  • Shumilov OI, Kasatkina EA, Henriksen K, Raspopov OM (1995) Ozone “miniholes” initiated by energetic solar protons. J Atmos Terr Phys 57:665–671

    Google Scholar 

  • Siingh D (2008) Cosmic rays and Earth’s atmospheric processes: a review. Earth Sci India 1(III):108–134

    Google Scholar 

  • Siingh D, Singh RP (2010) The role of cosmic rays on the Earth’s atmospheric processes. Pramana J Phys 74:153–168

    Google Scholar 

  • Siingh D, Singh RP, Kamra AK, Gupta PN, Singh R, Gopalakrishnan V, Singh AK (2005) Review of electromagnetic coupling between the Earth’s atmosphere and the space environment. J Atmos Sol Terr Phys 67:637–658. doi:10.1016/j.jastp.2004.09

    Google Scholar 

  • Siingh D, Gopalakrishnan V, Singh RP, Kamra AK, Singh S, Pant V, Singh R, Singh AK (2007) The atmospheric global electric circuit: an overview. Atmos Res 84:91–110. doi:10.1016/j.atmosres.2006.05.005

    Google Scholar 

  • Siingh D, Singh AK, Patel RP, Singh RP, Venadhar B, Mukherjee M (2008) Thunderstorm, lightning, sprites and magnetospheric whistler mode radio wave. Sur Geophys 29:499–551. doi:10.1007/s10712-008-9053-z

    Google Scholar 

  • Singh DK, Singh RP, Kamra AK (2004) The electrical environment of the Earth’s atmosphere: a review. Space Sci Rev 113:375–408

    Google Scholar 

  • Singh RP, Patel RP, Singh R, Singh RN (2005) Lightning produced nitrogen oxides in the lower atmosphere- an overview. Indian J Radio Space Phys 34:248–254

    Google Scholar 

  • Singh AK, Siingh D, Singh RP (2010) Space weather: physics, effects and predictability. Sur Geophys 31:581–638

    Google Scholar 

  • Singh AK, Siingh D, Singh RP (2011) Impact of galactic cosmic rays on Earth’s atmosphere and human health. Atmos Environ. doi:10.1016/j.atmosenv.2011.04.027

  • Sloan T, Wolfendale AW (2008) Testing the proposed causal link between cosmic rays and cloud cover. Environ Res Lett 3:024001. doi:10.1088/1748-9326/3/2/024001

    Google Scholar 

  • Smith DM, Lopez LI, Lin RP, Barrington-Leigh CP (2005) Terrestrial Gamma-Ray Flashes Observed up to 20 MeV. Science 307:1085–1088. doi:10.1126/science.1107466

    Google Scholar 

  • Smith DM, Cusack Stephen, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi:10.1126/science.1139540

    Google Scholar 

  • Solanki SK, Krivova NA (2003) Can solar variability explain global warming since 1970? J Geophys Res 108(A5):1200. doi:10.1029/2002JA009753

  • Solanki SK, Schüssler M, Fligge M (2000) Evolution of the Sun’s large-scale magnetic field since the Maunder minimum. Nature 408:445–447

    Google Scholar 

  • Soriano LR, Pablo F (2002) Effect of small urban areas in central Spain on the enhancement of cloud-to-ground lightning activity. Atmos Environ 36:2809–2816

    Google Scholar 

  • Sorokin A, Arnold F (2009) Analysis of experiments on ion-induced nucleation and aerosol formation in the presence of UV light and ionizing radiation. Atmos Environ 43. doi:10.1016/j.atmosenv.2009.03.023

  • Soukharev BE, Hood LL (2006) The solar cycle variation of stratospheric ozone: multiple regression analysis of long-term satellite data sets and comparisons with models. J Geophys Res 111:D20314. doi:10.1029/2006JD007107

    Google Scholar 

  • Speidel M, Nau R, Arnold F, Schlager H, Stohl A (2007) Sulfur dioxide measurements in the lower, middle and upper troposphere: deployment of an aircraft-based chemical ionization mass spectrometer with permanent in-flight calibration. Atmos Environ 41:2427–2437

    Google Scholar 

  • Stallins JA, Rose LS (2008) Urban lightning: current research, methods, and the geographical perspective. Geogr Compass 620–639. doi:10.1111/j.1749-8198.2008.00110.x

  • Steiger SM, Orville RE, Huffines G (2002) Cloud-to-ground lightning characteristics over Houston, Texas: 1989–2000. J Geophys Res 107. doi:10.1029/2001JD001142

  • Stephenson JAE, Scourfield MWJ (1991) Importance of energetic solar protons in ozone depletion. Nature 352:137–139

    Google Scholar 

  • Stevenson DS, Doherty RM, Sanderson MG, Collins WJ, Johnson CE, Derwent RG (2005) Radiative forcing from aircraft NOx emissions: Mechanisms and seasonal dependence. J Geophys Res 109:D17307. doi:10.1029/2004JD004759

    Google Scholar 

  • Stolzenburg M, Marshall TC, Rust WD, Bruning E, MacGorman DR, Hamlin T (2007) Electric field values observed near lightning flash initiations. Geophys Res Lett 34:L04804. doi:10.1029/2006GL028777

    Google Scholar 

  • Stott PA, Jones GS, Mitchell JFB (2003) Do models underestimate the solar contribution to recent climate change? J Clim 16(24):4079–4093

    Google Scholar 

  • Stringfellow MF (1974) Lightning incidence in Britain and the solar cycle. Nature 249:332–333

    Google Scholar 

  • Sun B, Bradley RS (2002) Solar influences on cosmic rays and cloud formation: a reassessment. J Geophys Res 107(D14):4211. doi:10.1029/2001JD000560

    Google Scholar 

  • Svensmark H (1998) Influence of cosmic rays on Earth’s climate. Physical Rev Lett 81(22):5027–5030

    Google Scholar 

  • Svensmark H (2007) Cosmoclimatology: a new theory emerges. A and G 47: February 2007: 1.18–1.24

  • Svensmark H, Friis-Christensen E (1997) Variations of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships. J Atmos Terr Phys 59:1225–1232

    Google Scholar 

  • Svensmark H, Pedesen JOP, Marsh ND, Enghoff MB, Uggerhoj UI (2007) Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proc R Soc 463:385–396

    Google Scholar 

  • Svensmark H, Bondo T, Svensmark J (2009) Cosmic ray decreases affect atmospheric aerosols and clouds. Geophys Res Lett 36:L15101

    Google Scholar 

  • Thejll P, Lassen K (2000) Solar forcing of the Northern hemisphere land air temperature: new data. J Atmos Solar Terr Phys 62(13):1207–1213

    Google Scholar 

  • Thomas BC, Jackman CH, Melott AL (2007) Modeling atmospheric effects of the September 1859 solar flare. Geophys Res Lett 34(6):L06810

    Google Scholar 

  • Tinsley BA (2000) Influence of the solar wind on the global electric circuit and inferred effects on cloud microphysics, temperature and dynamics in the troposphere. Space Sci Revs 94:231–258

    Google Scholar 

  • Tinsley BA (2004) Scavenging of condensation nuclei in clouds: dependence of sign of electroscavenging effect on droplet and CCN sizes. Extended Abstracts, ICCP Bologna, July 2004

  • Tinsley BA (2008) The global atmospheric electric circuit and its effects on cloud microphysics. Rep Prog Phys 71(066801):31. doi:10.1088/0034-4885/71/6/066801

  • Tinsley BA, Rohrbaugh RP, Hei M (2001) Electroscavenging in clouds with broad droplets size distributions and weak electrification. Atmos Res 115:59–60

    Google Scholar 

  • Tinsley BA, Burns GB, Zhou L (2007) The role of the global electric circuit in solar and internal forcing of clouds and climate. Adv Space Res 40:1126–1139. doi:10.1016/j.asr.2007.01.071

    Google Scholar 

  • Todd MC, Kniveton DR (2001) Changes in cloud cover associated with Forbush decreases of galactic cosmic rays. J Geophys Res 106(D23):32031–32041

    Google Scholar 

  • Todd MC, Kniveton DR (2004) Short-term variability in satellite-derived cloud cover and galactic cosmic rays: an update. J Atmos Sol Terr Phys 66:1205–1211

    Google Scholar 

  • Toumi R, Qie X (2004) Seasonal variation of lightning on the Tibetan Plateau: a spring anomaly? Geophs Res Lett 31:L04115. doi:10.1029/2003GL018930

    Google Scholar 

  • Toumi R, Haigh JD, Law KS (1996) A tropospheric ozone lightning climate feedback. Geophys Res Lett 23:1037–1040. doi:10.1029/96GL00944

    Google Scholar 

  • Trenberth K, Fasullo J (2010) Tracking Earth’s Energy. Science 328:316–317

    Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Tank AK, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change, in climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller H (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 235–336

    Google Scholar 

  • Tripathi SN, Harrison RG (2002) Enhancement of contact nucleation by scavenging of charged aerosol. Atmos Res 62:57–70

    Google Scholar 

  • Udelhofen PM, Hartmann DL (1995) Influence of tropical cloud systems on the relative humidity in the upper troposphere. J Geophys Res 100:7423–7440

    Google Scholar 

  • Unger N, Shindell DT, Koch DM, Amann M, Cofala J, Streets DG (2006) Influences of man-made emissions and climate changes on tropospheric ozone, methane, and sulfate at 2030 from a broad range of possible futures. J Geophys Res 111:D12313. doi:10.1029/2005JD006518

    Google Scholar 

  • Ushino T (2003) Lightning observation by the LIS aboard the TRMM satellite, Japan earth and planetary science joint meeting (Makuhari, Chiba) Abstract E024-012

  • van den Heever SC, Cotton WR, DeMott PJ, Prenni AJ (2006) Impact of nucleating aerosol on Florida convection, part1: mesoscale simulations. J Atmos Sci 63:1752–1775

    Google Scholar 

  • van Noije TPC, Eskes HJ, Dentener FJ, Stevenson DS, Ellingsen K, Schultz MG, Wild O, Amann M, Atherton CS, Bergmann DJ, Bey I, Boersma KF, Butler T, Cofala J, Drevet J, Fiore AM, Gauss M, Hauglustaine DA, Horowitz LW, Isaksen ISA, Krol MC, Lamarque J-F, Lawrence MG, Martin RV, Montanaro V, Muller J-F, Pitari G, Prather MJ, Pyle JA, Richter A, Rodriguez JM, Savage NH, Strahan SE, Sudo K, Szopa S, van Roozendael M (2006) Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000. Atmos Chem Phys 6:2943–2979

    Google Scholar 

  • Viggiano AA, Arnold F (1995) Ion chemistry and composition of the atmosphere. In: Volland H (ed) Atmos electro. CRC Press, Boca Raton, USA, pp 1–22

  • Von Biel HA (1992) Ionisation in the Antarctic stratosphere. J Atmos Terr Phys 54:235–242

    Google Scholar 

  • Wagner WJ (1984) Coronal mass ejections. Annu Rev Astron Astrophys 22:267–289

    Google Scholar 

  • Westcott NE (1995) Summer time cloud-to-ground lightning activity around major Midwestern urban areas. J Appl Meteorol 34:1633–1642

    Google Scholar 

  • White WB, Lean J, Cayan DR, Dettinger MD (1997) Response of global upper ocean temperature to changing solar irradiance. J Geophys Res 102(C2):3255–3266

    Google Scholar 

  • Williams ER (1985) Large-scale charge separation in thunderclouds. J Geophys Res 90:6013–6025

    Google Scholar 

  • Williams ER (1992) The Schumann Resonance: a global thermometer. Science 256:1184–1187. doi:10.1126/science.256.5060.1184

    Google Scholar 

  • Williams ER (2005) Lightning and climate: a review. Atmos Res 76:272–287. doi:10.1016/j.atmosres.2004.11.014

    Google Scholar 

  • Williams ER (2009) The global electrical circuit: a review. Atmos Res 91:140–152. doi:10.1016/j.atmosres.2008.05.018

    Google Scholar 

  • Williams ER, Renno NO (1993) An analysis of the conditional instability for the tropical atmosphere. Mon Weather Rev 121:21–36

    Google Scholar 

  • Williams ER, Satori G (2004) Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. J Atmos Sol Terr Phys 66:1213–1231

    Google Scholar 

  • Williams ER, Stanfill S (2002) The physical origin of the land-ocean contrast in lightning activity. C R Phys 3:1277–1292. doi:10.1016/S1631-0705(02)01407-X

    Google Scholar 

  • Williams ER, Weber ME, Orville RE (1989) The relationship between lightning type and convective state of thunderclouds. J Geophys Res 94:13213–13220

    Google Scholar 

  • Williams ER, Rosenfeld D, Madden N, Labrada C, Gerlach J, Atkinson L (1999) The role of boundary layer aerosol in the vertical development of precipitation and electrification: another look at the contrast between lightning over land and over ocean, Reprints, in Eleventh International Conference on Atmospheric Electricity. Amer Meteorol Soc, Boston, MA, pp 754–757

  • Williams ER, Rothkin K, Stevenson D, Boccippio D (2000) Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms. J Appl Meteorol 39:2223–2248 (TRMM Special Issue)

    Google Scholar 

  • Williams VJ, Austin J, Haigh JD (2001) Model simulations of the impact of the 27-day solar rotation period on stratospheric ozone and temperature. Adv Space Res 27(12):1933–1942

    Google Scholar 

  • Williams ER, Rosenfeld D, Madden N, Gerlach J, Gears N, Atkinson L, Dunnemann N, Frostrom G, Antonio M, Biazon B, Camargo R, Franca H, Gomes A, Lima M, Machado R, Manhaes S, Nachtigall L, Piva H, Quintiliano Machado W, Artaxo P, Roberts G, Renno N, Blakeslee R, Bailey J, Boccippio D, Betts A, Wolff D, Roy B, Halverson J, Rickenbach T, Fuentes J, Avelino E (2002) Contrasting convective regions over the Amazon: implications for cloud electrification. J Geophys Res 107(20):8082. doi:101029/2001JD000380

    Google Scholar 

  • Williams ER, Chan T, Boccippio D (2004) Islands as miniature continents: another look at the land-ocean lightning contrast. J Geophys Res 109:D16206. doi:10,1029/2003JD003833

    Google Scholar 

  • Williams ER, Mushtak VC, Rosenfeld D, Goodman SJ, Boccippio DJ (2005) Thermodynamics conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos Res 76:288–306. doi:10.1016/j.atmosres.2004.11.009

    Google Scholar 

  • Yair Y (2008) Charge generation and separation processes. Space Sci Rev 137:119–131. doi:10.1007/s11214-008-9348-x

    Google Scholar 

  • Yienger JJ, Levy H II (1995) Empirical model of global soil-biogenic NOx emissions. J Geophys Res 100:11447–11464

    Google Scholar 

  • Yu F, Turco RP (2001) From molecular clusters to nanoparticles: the role of ambient ionization in tropospheric aerosol formation. J Geophys Res 106:4797–4814

    Google Scholar 

  • Yu F, Wang Z, Luo G, Turco R (2008) Ion-mediated nucleation as an important global source of tropospheric aerosols. Atmos Chem Phys 8:2537–2554

    Google Scholar 

  • Zhang R, Lei W, Tie X, Hess P (2004) Industrial emissions cause extreme urban ozone diurnal variability. Proc Natl Acad Sci USA 101(17):6346–6350

    Google Scholar 

  • Zhou L, Tinsley BA (2007) The production of space charge at the boundaries of layer clouds. J Geophys Res 112:D11203. doi:10.1029/2006JD007998

Download references

Acknowledgments

This work was inspired by discussions which DS had with Prof. B.N. Goswami and suggestions given by him during his previous work on the role of cosmic rays in the Earth’s atmosphere. RPS acknowledges the facilities provided by the Head, Department of Physics. BHU, Varanasi. The authors thank the four anonymous reviewers for their critical comments which helped to improve this paper. They also express their gratitude to Prof. M. J. Rycroft for his valuable suggestions.This work was supported under the collaboration programme of IITM, Pune and BHU, Varanasi, and also partially supported under CAWSES programme (DS). The authors thank Mr Kirankumar Johare for help with correcting the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendraa Siingh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siingh, D., Singh, R.P., Singh, A.K. et al. Solar Activity, Lightning and Climate. Surv Geophys 32, 659–703 (2011). https://doi.org/10.1007/s10712-011-9127-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-011-9127-1

Keywords

Navigation