Skip to main content
Log in

Purification of metallurgical silicon using iron as impurity getter, part II: Extent of silicon purification

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Purification of metallurgical grade silicon (MG-Si), using iron as the impurity getter has been investigated. The technique involves growing Si dendrites from an alloy of MG-Si with iron, followed by their separation using a gravity based technique and acid leaching. The effects of cooling rate of the alloy and the subsequent quenching temperature on the segregation of the impurities were studied. It was found that slow cooling of the alloy below the eutectic temperature causes an increase in the Si impurity concentration due to diffusion of the impurities from the alloy to the Si. Quenching the alloy from temperatures above the eutectic eliminated this effect, increasing the purity of the Si product. A significant reduction in the concentration of the major impurities was achieved, making the Si product a suitable feedstock for solar grade silicon generation. The concentrations, in ppmw, of some elements in the Si product are Al: 10, B: 2, Mn: 3, Ni: 3, Cr: 1, Fe: 1, P: 29. Other impurities including V, Ba, Li, Be, and Mg were all below 0.5 ppmw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Wakefield and S. H. S. Nagaraja, United States Patent, Texas Instruments Incorporated (Dallas, TX), 3,933,981 (1976)

  2. P. S. Kotval, United States Patent, 4,193,975 (1980).

    Google Scholar 

  3. R. A. Kramer, United States Patent, 4,312,849 (1982).

    Google Scholar 

  4. J. L. Gumaste, B. C. Mohanty, R. K. Galgali, U. Syamaprasad, B. B. Nayak, S. K. Singh, and P. K. Jena, Solar Energy Materials 16, 289 (1987).

    Article  CAS  Google Scholar 

  5. K. Morita and T. Miki, Intermetallics 11, 1111 (2003).

    Article  CAS  Google Scholar 

  6. T. Yoshikawa, K. Arimura, and K. Morita, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 36, 837 (2005).

    Article  Google Scholar 

  7. T. Yoshikawa and K. Morita, Science and Technology of Advanced Materials 4, 531 (2003).

    Article  CAS  Google Scholar 

  8. T. Yoshikawa and K. Morita, 2005 TMS Annual Meeting (ed. M.E. Schlesinger), p. 549–558, Minerals, Metals and Materials Society, San Francisco (2005).

    Google Scholar 

  9. T. Yoshikawa and K. Morita, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 36, 731 (2005).

    Article  Google Scholar 

  10. T. Yoshikawa and K. Morita, ISIJ Int. 45, 967 (2005).

    Article  CAS  Google Scholar 

  11. T. Yoshikawa and K. Morita, ISIJ Int. 47, 582 (2007).

    Article  CAS  Google Scholar 

  12. F. A. Trumbore, The Bell System Technical J. 39, 205 (1960).

    Google Scholar 

  13. Z. Yin, A. Oliazadeh, S. Esfahani, M. D. Johnston, and M. Barati, Canadian Metallurgical Quarterly, 50, (2011) (in press)

  14. S. Esfahani and M. Barati, Met. Mater. Int. 17, 823 (2011).

    Article  CAS  Google Scholar 

  15. K. Tang, E. J. Øvrelid, G. Tranell, and M. Tangstad, Journal of Metals 61, 49 (2009).

    CAS  Google Scholar 

  16. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed., (eds. T. B. Massalski, J. L. Murray, L. H. Bennet, H. Baker), ASM International (1990).

  17. S. Esfahani and M. Barati, Materials Challenges in Alternative & Renewable Energy, p. 195–205, Amrican Ceramic Society, Florida (2010).

    Google Scholar 

  18. M. A. S. Pizzini and S. Binetti, Journal of Phys. Stat. Sol. (a) 202, 2928 (2005).

    Article  CAS  Google Scholar 

  19. G. F. Wakefield, P. D. Maycock, and T. L. Chu, 11th IEEE Photovoltaic Specialists Conference, p. 49–55, IEEE, New York (1975).

    Google Scholar 

  20. F. A. Trumbore, Bell System Technical Journal 39, 205 (1960).

    Google Scholar 

  21. S. Ueda, K. Morita, and N. Sano, Metallurgical and Materials Transactions B 28, 1151 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaghayegh Esfahani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esfahani, S., Barati, M. Purification of metallurgical silicon using iron as impurity getter, part II: Extent of silicon purification. Met. Mater. Int. 17, 1009–1015 (2011). https://doi.org/10.1007/s12540-011-6020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-011-6020-x

Keywords

Navigation