Skip to main content

Environmental Behavior of Synthetic Pyrethroids

  • Chapter
  • First Online:
Pyrethroids

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 314))

Abstract

New experimental approaches together with recent progress in spectroscopic technologies have given useful information to understand better the environmental fate of synthetic pyrethroids. The successive transformation of intermediate free radicals by using spin-trapping reagents and fluorophores enables their easier detection in aqueous photolysis. Chiral chromatographic analyses have shown stereo-selective metabolism of pyrethroids in soil. The knowledge on relevant enzymes in soil and plant being involved in hydrolysis, oxidation, and glucose conjugation of pyrethroids has been accumulated. Utilization of either iron–porphyrin with an oxidant or isolated leaf cells as model systems can give more information on metabolism of pyrethroids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. USEPA (2010) Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.00. United States Environmental Protection Agency, Washington DC. http://www.epa.gov/oppt/exposure/pubs/episuite.htm

  2. Tsuzuki M, Inoue A, Takimoto Y, Nishihara T (2003) Using simulation models to assess the ecological risk of pesticides to aquatic organisms. J Health Sci 49:249–259

    Article  CAS  Google Scholar 

  3. Rice PJ, Rice PJ, Arthur EL, Barefoot AC (2007) Advances in pesticide environmental fate and exposure assessments. J Agric Food Chem 55:5367–5376

    Article  CAS  Google Scholar 

  4. Mogensen BB, Sørensen PB, Stuer-Lauridsen F, Lassen P (2004) Fate of pyrethroids in farmland ponds. Pesticide Research No. 86. Ministry of the Environment, Danish Environmental Protection Agency, Copenhagen, p 112

    Google Scholar 

  5. Shamim MT, Hoffmann MD, Melendez J, Ruhman MA (2008) Ecological risk characterization for the synthetic pyrethroids. In: Gan J, Spurlock F, Hendley P, Weston DP (eds) Synthetic pyrethroids. Occurrence and behavior in aquatic environments, Chap 13. ACS Symposium Series 991, American Chemical Society, Washington DC, pp 257–309

    Google Scholar 

  6. Çalişir ED, Erkoç Ş (2006) Structural, electronic and QSAR properties of the cyfluthrin molecule: a theoretical AM1 and PM3 treatment. Intl J Modern Phys C 17:1391–1402

    Article  Google Scholar 

  7. Jubert AH, Alegre ML, Pis Diez R, Pomilio AB, Szewczuk VD (2007) Vibrational spectra, NMR and theoretical studies of the enantiomers and rotamers of alpha-cypermethrin. Spectrochim Acta A 66:1208–1221

    Article  CAS  Google Scholar 

  8. Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170

    CAS  Google Scholar 

  9. Katagi T (2006) Behavior of pesticides in water-sediment systems. Rev Environ Contam Toxicol 187:133–251

    Article  CAS  Google Scholar 

  10. Katagi T (2010) Bioconcentration, bioaccumulation and metabolism of pesticides in aquatic organisms. Rev Environ Contam Toxicol 204:1–132

    Article  CAS  Google Scholar 

  11. Helmuth DW, Ghiasuddin SM, Soderlund DM (1983) Poly(ethylene glycol) pretreatment reduces pyrethroid adsorption to glass surfaces. J Agric Food Chem 31:1127–1129

    Article  CAS  Google Scholar 

  12. Zhou JL, Rowland S, Mantoura FC (1995) Partition of synthetic pyrethroid insecticides between dissolved and particulate phases. Water Res 29:1023–1031

    Article  CAS  Google Scholar 

  13. Oudou HC, Hansen HC (2002) Sorption of lambda-cyhalothrin, cypermethrin, deltamethrin and fenvalerate to quartz, corundum, kaolinite and montmorillonite. Chemosphere 49:1285–1294

    Article  Google Scholar 

  14. Koshikinen WC, Rice PJ, Seebinger J (2006) Experimental variability in characterization of cyfluthrin sorption to soil. J Environ Sci Health B41:323–331

    Google Scholar 

  15. Ali MA, Baugh PJ (2003) Sorption-desorption studies of six pyrethroids and mirex on soils using GC/MS-NICI. Int J Anal Chem 83:923–933

    Article  CAS  Google Scholar 

  16. Maul JD, Trimble AJ, Lydy MJ (2008) Partitioning and matrix-specific toxicity of bifenthrin among sediments and leaf-sourced organic matters. Environ Toxicol Chem 27:945–952

    Article  CAS  Google Scholar 

  17. Liu J, Lü X, Xie J, Chu Y, Sun C, Wang Q (2009) Adsorption of lambda-cyhalothrin and cypermethrin on two typical Chinese soils as affected by copper. Environ Sci Pollut Res 16:414–422

    Article  CAS  Google Scholar 

  18. Bondarenko S, Putt A, Kavanaugh S, Poletika N, Gan J (2006) Time dependence distribution of pyrethroid insecticides in sediments. Environ Toxicol Chem 25:3148–3154

    Article  CAS  Google Scholar 

  19. Maund SJ, Hamer MJ, Lane MCG, Farrelly E, Rapley JH, Goggin VM, Gentle WE (2002) Partitioning, bioavailability and toxicity of the pyrethroid insecticide cypermethrin in sediments. Environ Toxicol Chem 21:9–15

    Article  CAS  Google Scholar 

  20. Thomsen M, Dobel S, Lassen P, Carlsen L, Mogensen BB, Hansen PE (2002) Reverse quantitative structure-activity relationship for modelling the sorption of esfenvalerate to dissolved organic matter. A multivariate approach. Chemosphere 49:1317–1325

    Article  CAS  Google Scholar 

  21. Shirzadi A, Simpson MJ, Xu Y, Simpson AJ (2008) Application of saturation transfer double difference NMR to elucidate the mechanistic interactions of pesticides with humic acids. Environ Sci Technol 42:1084–1090

    Article  CAS  Google Scholar 

  22. Keiluweit M, Kleber M (2009) Molecular-level interactions in soils and sediments: the role of aromatic π-systems. Environ Sci Technol 43:3421–3429

    Article  CAS  Google Scholar 

  23. Yang Y, Hunter W, Tao S, Gan J (2009) Effects of black carbon on pyrethroid availability in sediment. J Agric Food Chem 57:232–238

    Article  CAS  Google Scholar 

  24. Manoj VB, Gajbhiye VT (2007) Adsorption-desorption and leaching of bifenthrin in soil. Pestic Res J 19:257–261

    CAS  Google Scholar 

  25. Xu Y, Gan J, Wang Z, Spurlocks F (2008) Effect of aging on desorption kinetics of sediment-associated pyrethroids. Environ Toxicol Chem 27:1293–1301

    Article  CAS  Google Scholar 

  26. Yang Y, Hunter W, Tao S, Gan J (2008) Relationships between desorption intervals and availability of sediment-associated hydrophobic contaminants. Environ Sci Technol 42:8446–8451

    Article  CAS  Google Scholar 

  27. Tsuzuki M (2001) Vapor pressures of carboxylic acid esters including pyrethroids: measurement and estimation from molecular structure. Chemosphere 45:729–736

    Article  CAS  Google Scholar 

  28. Lyman WJ, Reehl WF, Rosenblatt DH (1990) In: Handbook of chemical property estimation methods. Environmental behavior of organic compounds. Ameican Chemical Society, Washington DC

    Google Scholar 

  29. Garau V, Angioni A, Real AAD, Russo M, Cabras P (2002) Disappearance of azoxystrobin, pyrimethanil, cyprodinil and fludioxinil on tomatoes in a greenhouse. J Agric Food Chem 50:1929–1932

    Article  CAS  Google Scholar 

  30. Voutsas E, Vavva C, Magoulas K, Tassios D (2005) Estimation of the volatilization of organic compounds from soil surfaces. Chemosphere 58:751–758

    Article  CAS  Google Scholar 

  31. Magrans JO, Alonso-Orados JL, García-Baudín JM (2002) Importance of considering pesticide stereoisomerism – proposal of a scheme to apply Directive 91/414/EEC framework to pesticide active substances manufactured as isomeric mixtures. Chemosphere 49:461–469

    Article  CAS  Google Scholar 

  32. EC (2009) Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council. Directives 79/117/EEC and 91/414/EEC. Official J Eur Union L309:1–50

    Google Scholar 

  33. Wong CS (2006) Environmental fate processes and biochemical transformations of chiral emerging organic pollutants. Anal Bioanal Chem 386:544–558

    Article  CAS  Google Scholar 

  34. Ye J, Wu J, Liu W (2009) Enantioselective separation and analysis of chiral pesticides by high-performance liquid chromatography. Trends Anal Chem 28:1148–1163

    Article  CAS  Google Scholar 

  35. Yang G-S, Vázquez PP, Frenich AG, Vidal M, Aboul-Enein HY (2004) Separation and simultaneous determination of enantiomers of tau-fluvalinate and permethrin in drinking water. Chromatographia 60:523–526

    Article  CAS  Google Scholar 

  36. Nillos MG, Qin S, Larive C, Schlenk D, Gan J (2009) Epimerization of cypermethrin stereoisomers in alcohols. J Agric Food Chem 57:6938–6943

    Article  CAS  Google Scholar 

  37. Bicker W, Kacprzak K, Kwit M, Lämmerhofer M, Gawronski J, Lindener W (2009) Assignment of absolute configurations of permethrin and its synthon 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid by electronic circular dichroism, optical rotation, and X-ray crystallography. Tetrahedron Asymmetry 20:1027–1035

    Article  CAS  Google Scholar 

  38. Liu W, Qin S, Gan J (2005) Chiral stability of synthetic pyrethroid insecticides. J Agric Food Chem 53:3814–3820

    Article  CAS  Google Scholar 

  39. You J, Lydy MJ (2007) A solution for isomerization of pyrethroid insecticides in gas chromatography. J Chromatogr A 1166:181–190

    Article  CAS  Google Scholar 

  40. Katagi T (2002) Abiotic hydrolysis of pesticides in the aquatic environment. Rev Environ Contam Toxicol 175:79–261

    CAS  Google Scholar 

  41. Leicht W, Fuchs R, Londershausen M (1996) Stability and biological activity of cyfluthrin isomers. Pestic Sci 48:325–332

    Article  CAS  Google Scholar 

  42. Qin S, Gan J (2007) Abiotic enantiomerization of permethrin and cypermethrin: effects of organic solvents. J Agric Food Chem 55:5734–5739

    Article  CAS  Google Scholar 

  43. Kaware M, Bronshtein A, Safi J, Van Emon JM, Chuang JC, Hock B, Kramer K, Altstein M (2006) Enzyme-linked immunoassay (ELISA) and sol-gel-based immunoaffinity purification (IAP) of the pyrethroid bioallethrin in food and environmental samples. J Agric Food Chem 54:6482–6492

    Article  CAS  Google Scholar 

  44. Hao XL, Kuang H, Li YL, Yuan Y, Peng CF, Chen W, Wang LB, Xu CL (2009) Development of an enzyme-linked immunosorbent assay for the α-cyano pyrethroids multiresidue in Tai lake water. J Agric Food Chem 57:3033–3039

    Article  CAS  Google Scholar 

  45. Shan G, Stouramire DW, Wengatz I, Gee SJ, Hammock BD (1999) Development of an immunoassay for the pyrethroid insecticide esfenvalerate. J Agric Food Chem 47:2145–2155

    Article  CAS  Google Scholar 

  46. Allan IJ, House WA, Parker A, Carter JE (2005) Diffusion of the synthetic pyrethroid permethrin into bed-sediments. Environ Sci Technol 39:523–530

    Article  CAS  Google Scholar 

  47. OECD Guideline for the testing of chemicals (2004) Leaching in soil columns, No 312. OECD, Brussels, p 15

    Google Scholar 

  48. Gupta S, Gajbhiye VT (2002) Persistence and leaching of β-cyfluthrin in alluvial soil of India. Pest Manag Sci 58:1259–1265

    Google Scholar 

  49. Ismail BS, Kalithasan K (2004) Adsorption, desorption, and mobility of permethrin in Malaysian soils. J Environ Sci Health B39:419–429

    CAS  Google Scholar 

  50. Selim HM, Zhu H (2002) Retention and mobility of deltamethrin in soils: 2. Transport. Soil Sci 167:580–589

    Article  CAS  Google Scholar 

  51. Khan AT, Thomson MB (1990) Groundwater transport of hydrophobic organic compounds in the presence of dissolved organic matter. Environ Toxicol Chem 9:253–263

    Article  Google Scholar 

  52. Williams CF, Letey J, Farmer WJ (2006) Estimating the potential for facilitated transport of napropamide by dissolved organic matter. Soil Sci Soc Am J 70:24–30

    Article  CAS  Google Scholar 

  53. Katagi T (2008) Surfactant effects on environmental behavior of pesticides. Rev Environ Contam Toxicol 194:71–177

    Article  CAS  Google Scholar 

  54. Laabs V, Amelung W, Pinto A, Altstaedt A, Zech W (2000) Leaching and degradation of corn and soybean pesticides in an oxisol of the Brazilian Cerrados. Chemosphere 41:1441–1449

    Article  CAS  Google Scholar 

  55. Gonçalves CM, Esteves da Silva JCG, Alpendurada MF (2007) Evaluation of the pesticide contamination of groundwater sampled over two years from a vulnerable zone in Portugal. J Agric Food Chem 55:6227–6235

    Article  CAS  Google Scholar 

  56. Nishiyama M, Suzuki Y, Katagi T (2010) Hydrolysis and photolysis of insecticide metofluthrin in water. J Pestic Sci 35:447–455

    Article  CAS  Google Scholar 

  57. Ruzo LO, Holmstead RL, Casida JE (1977) Pyrethroid photochemistry: decamethrin. J Agric Food Chem 25:1385–1394

    Article  CAS  Google Scholar 

  58. Bondarenko S, Gan J (2009) Simultaneous measurement of free and total concentrations of hydrophobic compounds. Environ Sci Technol 43:3772–3777

    Article  CAS  Google Scholar 

  59. Georgi A, Trommler U, Reichl A, Kopinke F-D (2008) Influence of sorption to dissolved humic substances on transformation reactions of hydrophobic organic compounds in water. Part II: hydrolysis reactions. Chemosphere 71:1452–1460

    Article  CAS  Google Scholar 

  60. Katagi T (2004) Photodegradation of pesticides on plant and soil surfaces. Rev Environ Contam Toxicol 182:1–195

    Article  CAS  Google Scholar 

  61. Ohsawa K, Casida JE (1979) Photochemistry of the potent knockdown pyrethroid kadethrin. J Agric Food Chem 27:1112–1120

    Article  CAS  Google Scholar 

  62. Mikami N, Takahashi N, Yamada H, Miyamoto J (1985) Separation and identification of short-lived free radicals formed by photolysis of the pyrethroid insecticide fenvalerate. Pestic Sci 16:101–112

    Article  CAS  Google Scholar 

  63. Sanjuán A, Aguirre G, Alvaro M, García H, Scaiano JC, Chrétien MN, Focsaneanu K-S (2002) Product studies and laser flash photolysis of direct and 2,4,6-triphenylpyrylium-zeolite Y photocatalyzed degradation of fenvalerate. Photochem Photobiol Sci 1:955–959

    Article  CAS  Google Scholar 

  64. Suzuki Y, Katagi T (2008) Novel fluorescence detection of free radicals generated in photolysis of fenvalerate. J Agric Food Chem 56:10811–10816

    Article  CAS  Google Scholar 

  65. Katagi T, Mikami N, Matsuda T, Miyamoto J (1989) Molecular orbital and experimental studies on the photoinduced decarboxylation of pyrethroid model esters. J Chem Soc Perkin Trans 2:779–782

    Google Scholar 

  66. Class TJ, Casida JE, Ruzo LO (1989) Photochemistry of etofenprox and three related pyrethroids with ether, alkane, and alkene central linkage. J Agric Food Chem 37:216–222

    Article  CAS  Google Scholar 

  67. EFSA (2008) Conclusion regarding the peer review of the pesticide risk assessment of the active substance etofenprox. EFSA Scientific Report 213. European Food Safety Authority, Parma, pp 1–131 http://www.efsa.europa.eu/en/scdocs/scdoc/213r.htm

  68. Vione D, Falletti G, Maurino V, Minero C, Pelizzetti E, Malandrino M, Ajassa R, Olariu R-I, Arsene C (2006) Sources and sinks of hydroxyl radicals upon irradiation of natural water samples. Environ Sci Technol 40:3775–3781

    Article  CAS  Google Scholar 

  69. Garner AL, St Croix CM, Pitt BR, Leikauf GD, Ando S, Koide K (2009) Specific fluorogenic probes for ozone in biological and atmospheric sample. Nat Chem 1:316–321

    Article  CAS  Google Scholar 

  70. Atkinson R (1986) Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chem Rev 86:69–201

    Article  CAS  Google Scholar 

  71. Minakata D, Li K, Westerhoff P, Crittenden J (2009) Development of a group contribution method to predict aqueous phase hydroxyl radical (HO·) reaction rate constants. Environ Sci Technol 43:6220–6227

    Article  CAS  Google Scholar 

  72. Nambu K, Ohkawa H, Miyamoto J (1980) Metabolic fate of phenothrin in plants and soils. J Pestic Sci 5:177–197

    Article  CAS  Google Scholar 

  73. Segal-Rosenheimer M, Dubowski Y (2007) Heterogeneous ozonolysis of cypermethrin using real-time monitoring FTIR techniques. J Phys Chem C 111:11682–11691

    Article  CAS  Google Scholar 

  74. Katagi T, Mikami N (2000) Primary metabolism of agrochemicals in plants. In: Roberts TR (ed) Metabolism of agrochemicals in plants, Chap 3. Wiley, Chichester, pp 43–106

    Google Scholar 

  75. Graebing P, Chib JS (2004) Soil photolysis in a moisture- and temperature-controlled environment. 2. Insecticides. J Agric Food Chem 52:2606–2614

    Article  CAS  Google Scholar 

  76. Katagi T (1991) Photodegradation of the pyrethroid insecticide esfenvalerate on soil, clay minerals, and humic acid surfaces. J Agric Food Chem 39:1351–1356

    Article  CAS  Google Scholar 

  77. Wu F, Li J, Peng Z, Deng N (2008) Photochemical formation of hydroxyl radicals catalyzed by montmorillonite. Chemosphere 72:407–413

    Article  CAS  Google Scholar 

  78. Fecko A (1999) Environmental fate of bifenthrin. Fate reviews. California Department of Pesticide Regulation, Sacramento, pp 10. http://www.cdpr.ca.gov/docs/emon/pubs/envfate.htm

  79. European Commission (2001) Review report for the active substance lambda-cyhalothrin. Directorate – General, Health and Consumer Protection, E1 – Plant health, Brussels, 7572/VI/97- final, pp 52

    Google Scholar 

  80. European Commission (2004) Review report for the active substance alpha-cypermethrin. Directorate – General, Health and Consumer Protection, E1 – Plant health, Brussels, SANCO/4335/2000 final, pp 76

    Google Scholar 

  81. European Commission (2002) Review report for the active substance deltamethrin. Directorate – General, Health and Consumer Protection, E1 – Plant health, Brussels, 6504/VI/99- final, pp 78

    Google Scholar 

  82. European Commission (2005) Review report for the active substance esfenvalerate. Directorate – General, Health and Consumer Protection, D3 – Chemicals, Contaminants and Pesticides, Brussels, 6846/VI/97- final, pp 26

    Google Scholar 

  83. European Commission (2002) Guidance document on aquatic ecotoxicology., Health and Consumer Protection Directorate – General, Brussels, Sanco/3268/2001 rev 4 (final), pp 62

    Google Scholar 

  84. Kodaka R, Sugano T, Katagi T (2009) Degradation of esfenvalerate in illuminated water-sediment system. J Pestic Sci 34:27–36

    Article  CAS  Google Scholar 

  85. Pérez-Fernández V, García MA, Marina ML (2010) Characteristics and enantiomeric analysis of chiral pyrethroids. J Chromatogr A 1217:968–989

    Article  CAS  Google Scholar 

  86. Sakata S, Mikami N, Yamada H (1992) Degradation of pyrethroid optical isomers in soils. J Pestic Sci 17:169–180

    Article  Google Scholar 

  87. Lee PW, Powell WR, Stearns SM, McConnell OJ (1987) Comparative aerobic soil metabolism of fenvalerate isomers. J Agric Food Chem 35:384–387

    Article  CAS  Google Scholar 

  88. Li Z, Zhang Z, Zhang L, Leng L (2009) Isomer- and enantioselective degradation and chiral stability of fenpropathrin and fenvalerate in soils. Chemosphere 76:509–516

    Article  CAS  Google Scholar 

  89. Li ZY, Zhang ZC, Zhang L, Leng L (2008) Stereo and enantioselective degradation of β-cypermethrin and β-cyfluthrin in soil. Bull Environ Contam Toxicol 80:335–339

    Article  CAS  Google Scholar 

  90. Dondi M, Flieger M, Olsovska J, Polcaro CM, Sinibaldi M (1999) High-performance liquid chromatography study of the enantiomer separation of chrysanthemic acid and its stationary phase. J Chromatogr A 859:133–142

    Article  CAS  Google Scholar 

  91. Liu W, Gan JJ (2004) Separation and analysis of diastereomers and enantiomers of cypermethrin and cyfluthrin by gas chromatography. J Agric Food Chem 52:755–761

    Article  CAS  Google Scholar 

  92. Liu W, Gan JJ, Lee S, Werner I (2004) Isomer selectivity in aquatic toxicity and biodegradation of cypermethrin. J Agric Food Chem 52:6233–6238

    Article  CAS  Google Scholar 

  93. Qin S, Gan J (2006) Enantiomeric differences in permethrin degradation pathways in soil and sediment. J Agric Food Chem 54:9145–9151

    Article  CAS  Google Scholar 

  94. Chapman RA, Harris CR (1981) Persistence of four pyrethroid insecticides in a mineral and an organic soil. J Environ Sci Health B16:605–615

    CAS  Google Scholar 

  95. Liu W, Gan JJ (2004) Determination of enantiomers of synthetic pyrethroids in water by solid phase microextraction – enantioselective gas chromatography. J Agric Food Chem 52:736–741

    Article  CAS  Google Scholar 

  96. Liu W, Gan J, Schlenk D, Jury WA (2005) Enantioselectivity in environmental safety of current chiral insecticides. Proc Natl Acad Sci USA 102:701–706

    Article  CAS  Google Scholar 

  97. Qin S, Budd R, Bondarenko S, Liu W, Gan J (2006) Enantioselective degradation and chiral stability of pyrethroids in soil and sediment. J Agric Food Chem 54:5040–5045

    Article  CAS  Google Scholar 

  98. Kodaka R, Suzuki Y, Sugano T, Katagi T (2007) Aerobic metabolism and adsorption of pyrethroid insecticide metofluthrin in soil. J Pestic Sci 32:393–401

    Article  CAS  Google Scholar 

  99. Suzuki Y, Yoshimura J, Katagi T (2006) Aerobic metabolism and adsorption of pyrethroid insecticide imiprothrin in soil. J Pestic Sci 31:322–328

    Article  CAS  Google Scholar 

  100. Saikia N, Gopal M (2004) Biodegradation of β-cyfluthrin by fungi. J Agric Food Chem 52:1220–1223

    Article  CAS  Google Scholar 

  101. Saikia N, Das SK, Patel BKC, Niwas R, Singh A, Gopal M (2005) Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain S1. Biodegradation 16:581–589

    Article  CAS  Google Scholar 

  102. Fan YYD (2003) Preliminary study of an enzyme extracted from Alcaligenes sp. Strain YF11 capable of degrading pesticides. Bull Environ Contam Toxicol 70:367–371

    Article  CAS  Google Scholar 

  103. Grant RJ, Daniell TJ, Betts WB (2002) Isolation and identification of synthetic pyrethroid-degrading bacteria. J Appl Microbiol 92:534–540

    Article  CAS  Google Scholar 

  104. Grant RJ, Betts WB (2004) Mineral and carbon usage of two synthetic pyrethroid degrading bacterial isolates. J Appl Microbiol 97:656–662

    Article  CAS  Google Scholar 

  105. Lee S, Gan J, Kim JS, Kabashima JN, Crowley DE (2004) Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ Toxicol Chem 23:1–6

    Article  CAS  Google Scholar 

  106. Xia X, Wang R (2008) Effect of sediment particle size on polycyclic aromatic hydrocarbon biodegradation: importance of the sediment-water interface. Environ Toxicol Chem 27:119–125

    Article  CAS  Google Scholar 

  107. Sakata S, Mikami N, Yamada H (1992) Degradation of pyrethroid optical isomers by soil microorganisms. J Pestic Sci 17:181–189

    Article  Google Scholar 

  108. Maloney SE, Maule A, Smith ARW (1988) Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl Environ Microbiol 54:2874–2876

    CAS  Google Scholar 

  109. Tallur PN, Megadi VB, Ninnekar HZ (2008) Biodegradation of cypermethrin by Micrococcus sp strain CPN1. Biodegradation 19:77–82

    Article  CAS  Google Scholar 

  110. Paingankar M, Jain M, Deobagkar D (2005) Biodegradation of allethrin, a pyrethroid insecticide, by an Acidomonas sp. Biotechnol Lett 27:1909–1913

    Article  CAS  Google Scholar 

  111. Mukherjee I, Mittal A (2007) Dissipation of β-cyfluthrin by two fungi Aspergillus nidulans var dentatus and Sepedonium maheswarium. Toxicol Environ Chem 89:319–326

    Article  CAS  Google Scholar 

  112. Liang WQ, Wang ZY, Li H, Wu PC, Hu JM, Luo N, Cao LX, Liu YH (2005) Purification and characterization of a novel hydrolase from Aspergillus niger ZD11. J Agric Food Chem 53:7415–7420

    Article  CAS  Google Scholar 

  113. Guo P, Wang B, Hang B, Li L, Ali SW, Li S (2009) Pyrethroid-degrading Sphingobium sp JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. Int Biodeterior Biodegradation 63:1107–1112

    Article  CAS  Google Scholar 

  114. Wheelock CE, Shan G, Ottea J (2005) Overview of carboxylesterases and their role in the metabolism of insecticides. J Pestic Sci 30:75–83

    Article  CAS  Google Scholar 

  115. Fukuto TR (1990) Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect 87:245–254

    Article  CAS  Google Scholar 

  116. Wang B-Z, Guo P, Hang B-J, Li L, He J, Li S-P (2009) Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp strain JZ-1 and characterization of the gene product. Appl Environ Microbiol 75:5496–5500

    Article  CAS  Google Scholar 

  117. Leahey JP (1985) Metabolism and environmental degradation. In: Leahey JP (ed) The pyrethroid insecticides, Chap 5. Taylor & Francis, London, pp 263–342

    Google Scholar 

  118. Fortnagel P, Wittich RM, Harms H, Schmidt S (1989) New bacterial degradation of the biaryl ether structure. Naturwissenshaften 76:523–524

    Article  CAS  Google Scholar 

  119. Wilkes H, Francke W (1992) Mechanistic investigations on microbial degradation of diaryl ethers. Naturwissenschaften 79:269–271

    Article  CAS  Google Scholar 

  120. Schmidt S, Wittich R-M, Erdmann D, Wilkes H, Francke W, Fortnagel P (1992) Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp strain SS3. Appl Environ Microbiol 58:2744–2750

    CAS  Google Scholar 

  121. Halden RU, Tepp SM, Halden BG, Dwyer DF (1999) Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains. Appl Environ Microbiol 65:3354–3359

    CAS  Google Scholar 

  122. Halden RU, Peters EG, Halden BG, Dwyer DF (2000) Transformation of mono- and dichlorinated phenoxybenzoate-dioxygenase in Pseudomonas pseudoalcaligenes POB310 and a modified diarylether-metabolizing bacterium. Biotechnol Bioeng 69:107–112

    Article  CAS  Google Scholar 

  123. Topp E, Akhtar MH (1990) Mineralization of 3-phenoxybenzoate by a two-membered bacterial co-culture. Can J Microbiol 36:495–499

    Article  CAS  Google Scholar 

  124. Fukushima M, Katagi T (2009) Iron-porphyrin catalyzed oxidation of permethrin and fenvalerate. J Pestic Sci 34:241–252

    Article  CAS  Google Scholar 

  125. Sträuber H, Müller RH, Babel W (2003) Evidence of cytochrome P450-catalyzed cleavage of the ether bond of phenoxybutyrate herbicides in Rhodococcus erythropolis K2-3. Biodegradation 14:41–50

    Article  Google Scholar 

  126. Bewick DW, Hill IR, Pluckrose J, Stevens JEB, Weissler MS (1986) The role of laboratory and field studies, using radiolabelled materials, in the investigation of the degradation and mobility of tefluthrin in soil. Proceedings, BCPC Conference – Pest and Diseases, British Crop Protection Council, Brighton, 4B-2, pp 459–468

    Google Scholar 

  127. Neilson AH, Allard A-S (2002) Degradation and transformation of organic fluorine compounds. In: Neilson AH (ed) The handbook of environmental chemistry, vol 3N: organofluorines, Chap 6. Springer, Berlin, pp 137–202

    Google Scholar 

  128. Van der Bolt FJT, van den Heuvel RHH, Vervoort J, van Berkel WJH (1997) 19F NMR study on the regiospecificity of hydroxylation of tetrafluoro-4-hydroxybenzoate by wild-type and Y385F p-hydroxybenzoate hydroxylase: evidence for a consecutive oxygenolytic dehalogenation. Biochemistry 36:14192–14201

    Article  Google Scholar 

  129. Schiller JG, Chung AE (1970) The metabolism of cyclopropanecarboxylic acid. J Biol Chem 245:5857–5864

    CAS  Google Scholar 

  130. Toraya T, Oka T, Ando M, Yamanishi M, Nishihara H (2004) Novel pathway for utilization of cyclopropanecarboxylate by Rhodococcus rhodochrous. Appl Environ Microbiol 70:224–228

    Article  CAS  Google Scholar 

  131. Cole DJ, Edwards R (2000) Secondary metabolism of agrochemicals in plants. In: Roberts TR (ed) Metabolism of agrochemicals in plants, Chap 4. Wiley, Chichester, pp 107–154

    Google Scholar 

  132. Roberts TR, Hutson DH (1999) In: Metabolic pathways of agrochemicals. Part 2: Insecticides and fungicides. The Royal Society of Chemistry, Cambridge, pp 579–725

    Google Scholar 

  133. Cai X, Liu W, Sheng G (2008) Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater algae cultures. J Agric Food Chem 56:2139–2146

    Article  CAS  Google Scholar 

  134. Schneiderheinze JM, Armstrong DW, Berthod A (1999) Plant and soil enantioselective biodegradation of racemic phenoxyalkanoic herbicides. Chirality 11:330–337

    Article  CAS  Google Scholar 

  135. Cummins I, Burnet M, Edwards R (2001) Biochemical characterisation of esterases active in hydrolysing xenobiotics in wheat and competing weeds. Physiol Plant 113:477–485

    Article  CAS  Google Scholar 

  136. Gershater M, Sharples K, Edwards R (2006) Carboxyesterase activities toward pesticide esters in crops and weeds. Phytochemistry 67:2561–2567

    Article  CAS  Google Scholar 

  137. Cummins I, Edwards R (2004) Purification and cloning of an esterase from the weed black-grass (Alopecurus myosuroides), which bioactivates aryloxyphenoxypropionate herbicides. Plant J 39:894–904

    Article  CAS  Google Scholar 

  138. Gershater M, Edwards R (2007) Regulating biological activity in plants with carboxyesterses. Plant Sci 173:579–588

    Article  CAS  Google Scholar 

  139. Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park SW, Chiang Y, Acton TB, Montelione GT, Pichersky E, Klessig DF, Tong L (2005) Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci USA 102:1773–1778

    Article  CAS  Google Scholar 

  140. Ileperuma NR, Marshall SDG, Squire CJ, Baker HM, Oakeshott JG, Russell RJ, Plummer KM, Newcomb RD, Baker EN (2007) High-resolution crystal structure of plant carboxyesterase AeCXE1, from Actinidia eriantha, and its complex with a high-affinity inhibitor paraoxon. Biochemistry 46:1851–1859

    Article  CAS  Google Scholar 

  141. Bowles D, Isayenkova J, Lim E-K, Poppenberger B (2005) Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol 8:254–263

    Article  CAS  Google Scholar 

  142. Siminszky B (2006) Plant cytochrome P450-mediated herbicide metabolism. Phytochem Rev 5:445–458

    Article  CAS  Google Scholar 

  143. Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol 49:311–343

    Article  CAS  Google Scholar 

  144. Katagi T (2005) Semi-empirical AM1 and PM3 calculations of five- and six-coordinate oxo iron (IV) porphyrin complexes. J Mol Struct 728:49–56

    CAS  Google Scholar 

  145. Mikami N, Baba Y, Katagi T, Miyamoto J (1985) Metabolism of the synthetic pyrethroid fenpropathrin in plants. J Agric Food Chem 33:980–987

    Article  CAS  Google Scholar 

  146. Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5:380–386

    Article  CAS  Google Scholar 

  147. Pflugmacher S, Sandermann H Jr (1998) Taxonomic distribution of plant glucosyltransferases acting on xenobiotics. Phytochemistry 49:507–511

    Article  CAS  Google Scholar 

  148. Offen W, Martinez-Fleites C, Yang M, Kiat-Lim E, Davis BG, Tarling CA, Ford CM, Bowles DJ, Davies GJ (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25:1396–1405

    Article  CAS  Google Scholar 

  149. Lim E-K, Doucet CJ, Li Y, Elias L, Worrall D, Spencer SP, Ross J, Bowles DJ (2002) The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem 277:586–592

    Article  CAS  Google Scholar 

  150. Meβner B, Thulke O, Schäffner AR (2003) Arabidopsis glucosyltransferases with activities toward both endogeneous and xenobiotic substrates. Planta 217:138–146

    Google Scholar 

  151. Brazier M, Cole DJ, Edwards R (2002) O-Glucosyltransferase activities toward phenolic natural products and xenobiotics in wheat and herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Phytochemistry 59:149–156

    Article  CAS  Google Scholar 

  152. Fujisawa T, Kurosawa M, Katagi T (2006) Uptake and transformation of pesticide metabolites by duckweed (Lemna gibba). J Agric Food Chem 54:6286–6293

    Article  CAS  Google Scholar 

  153. Giri A, Dhingra V, Giri CC, Singh A, Ward OP, Narasu ML (2001) Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnol Adv 19:175–199

    Article  CAS  Google Scholar 

  154. Fujisawa T, Matoba Y, Katagi T (2009) Application of separated leaf cell suspension to xenobiotic metabolism in plant. J Agric Food Chem 57:6982–6989

    Article  CAS  Google Scholar 

  155. Wang L, Liu W, Yang C, Pan Z, Gan J, Xu C, Zhao M, Schlenk D (2007) Enantioselectivity in estrogenic potential and uptake of bifenthrin. Environ Sci Technol 41:6124–6128

    Article  CAS  Google Scholar 

  156. Schimmel SC, Garnas RL, Patrick JM Jr, Moore JC (1983) Acute toxicity, bioconcentration, and persistence of AC 222,705, benthiocarb, chlorpyrifos, fenvalerate, methyl parathion, and permethrin in the estuarine environment. J Agric Food Chem 31:104–113

    Article  CAS  Google Scholar 

  157. DiToro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583

    Article  CAS  Google Scholar 

  158. You J, Landrum PF, Lydy MJ (2006) Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ Sci Technol 40:6348–6353

    Article  CAS  Google Scholar 

  159. Huckle KR, Millburn P (1990) Metabolism, bioconcentration and toxicity of pesticides in fish. In: Hutson FH, Roberts TR (eds) Progress in pesticide biochemistry, vol 7, Chap 8. Wiley, Chichester, pp 175–243

    Google Scholar 

  160. Schlenk D (2005) Pesticide biotransformation in fish. In: Mommsen TP, Moon TW (eds) Environmental toxicology, biochemistry and molecular biology of fishes, Chap 6, vol 6. Elsevier, San Diego, pp 171–190

    Google Scholar 

  161. EFSA (2008) Final addendum to the Draft Assessment Report (DAR), Bifenthrin, public version. Background document A, pp 685, European Food Safety Authority, Parma. http://www.efsa.europa.eu/en/scdocs/scdoc/186r.htm

  162. Bradbury SP, Coats JR (1989) Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environ Toxicol Chem 8:373–380

    Article  CAS  Google Scholar 

  163. Ohshima M, Yoshida S, Saito S, Mikami N, Matsuo M (1992) Taurine conjugation of the ester metabolite of prallethrin in bluegill sunfish, Lepomis macrochirus. J Pestic Sci 17:283–285

    Article  Google Scholar 

  164. Vogel JR, Majewski MS, Capel PD (2008) Pesticide in rain in four agricultural watershed in the United States. J Environ Qual 37:1101–1115

    Article  CAS  Google Scholar 

  165. Dasgupta S, Cheplick JM, Denton DL, Troyan JJ, Williams WM (2008) Predicted runoff loads of permethrin to the Sacramento river and its tributaries. In: Gan J, Spurlock F, Hendley P, Weston DP (eds) Synthetic pyrethroids. Occurrence and behavior in aquatic environments, Chap 11. ACS Symposium Series 991, American Chemical Society, Washington DC, pp 223–237

    Google Scholar 

  166. Hladik ML, Kuivila KM (2009) Assessing the occurrence and distribution of pyrethroids in water and suspended sediments. J Agric Food Chem 57:9079–9085

    Article  CAS  Google Scholar 

  167. Bacey J, Spurlock F, Starner K, Feng H, Hsu J, White J, Tran DM (2005) Residues and toxicity of esfenvalerate and permethrin in water and sediments, in tributaries of the Scaramento and San Joaquin Rivers, California, USA. Bull Environ Contam Toxicol 74:864–871

    Article  CAS  Google Scholar 

  168. House WA, Long JLA, Rae JE, Parker A, Orr DR (2000) Occurrence and mobility of the insecticide permethrin in rivers in the southern Humber catchment, UK. Pest Manag Sci 56:597–606

    Article  CAS  Google Scholar 

  169. Lauridsen RB, Kronvang B, Friberg N (2006) Occurrence of sediment-bound pyrethroids in Danish streams and their impact on ecosystem function. Water Air Soil Pollut Focus 6:423–432

    Article  CAS  Google Scholar 

  170. Weston DP, Lydy MJ (2010) Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin Delta of California. Environ Sci Technol 44:1833–1840

    Article  CAS  Google Scholar 

  171. Amweg EL, Weston DP, You J, Lydy MJ (2006) Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Environ Sci Technol 40:1700–1706

    Article  CAS  Google Scholar 

  172. Hintzen EP, Lydy MJ, Belden JB (2009) Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in central Texas. Environ Pollut 157:110–116

    Article  CAS  Google Scholar 

  173. Holmes RW, Anderson BS, Phillips BM, Hunt JW, Crane DB, Mekebri A, Connor V (2008) Statewide investigation of the role of pyrethroid pesticides in sediment toxicity in California’s urban waterways. Environ Sci Technol 42:7003–7009

    Article  CAS  Google Scholar 

  174. Miranda K, Cunha MLF, Dores EFGC, Calheiros DF (2008) Pesticide residues in river sediments from the Pantanal wetland, Brazil. J Environ Sci Health 43B:717–722

    Google Scholar 

  175. Weston DP, You J, Lydy MJ (2004) Distribution and toxicity of sediment-associated pesticides in agriculture-dominated water bodies of California’s Central Valley. Environ Sci Technol 38:2752

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Katagi .

Editor information

Editors and Affiliations

Appendix. Chemical Structures of Synthetic Pyrethroids

Appendix. Chemical Structures of Synthetic Pyrethroids

  1. (3a) beta-cyfluthrin; (1S)-cis/trans,(αR) + (1R)-cis/trans,(αS) (1:1). (4a) lambda-cyhalothrin; (Z)-(1R)-cis,(αS). (5a) alpha-cypermethrin; (1R)-cis,(αS) + (1S)-cis,(αR) (1:1). (5b) beta-cypermethrin; (1R)-cis/trans,(αS) + (1S)-cis/trans,(αR) (cis/trans = 2:3). (5c) theta-cypermethrin; (1R)-trans,(αS) + (1S)-trans,(αR) (1:1). (5d) zeta-cypermethrin ; (1RS)-cis/trans,(αS) (cis/trans = 1:1). (9a) esfenvalerate; (2S),(αS). (9b) (2S),(αR) isomer. (14) Z/E = 9:1

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Katagi, T. (2011). Environmental Behavior of Synthetic Pyrethroids. In: Matsuo, N., Mori, T. (eds) Pyrethroids. Topics in Current Chemistry, vol 314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_255

Download citation

Publish with us

Policies and ethics