We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pseudomonas aeruginosa biofilms in cystic fibrosis

    ,
    Oana Ciofu

    Division of Bacteriology, Department of International Health, Immunology and Microbiology (ISIM), Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark

    &
    Thomas Bjarnsholt

    Department of Clinical Microbiology 9301, Rigshospitalet, University of Copenhagen, Juliane Maries Vej 22, 2200 Copenhagen, Denmark

    Published Online:https://doi.org/10.2217/fmb.10.125

    The persistence of chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients is due to biofilm-growing mucoid (alginate-producing) strains. A biofilm is a structured consortium of bacteria, embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. In CF lungs, the polysaccharide alginate is the major part of the P. aeruginosa biofilm matrix. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and resist phagocytosis, as well as other components of the innate and the adaptive immune system. As a consequence, a pronounced antibody response develops, leading to immune complex-mediated chronic inflammation, dominated by polymorphonuclear leukocytes. The chronic inflammation is the major cause of the lung tissue damage in CF. Biofilm growth in CF lungs is associated with an increased frequency of mutations, slow growth and adaptation of the bacteria to the conditions in the lungs, and to antibiotic therapy. Low bacterial metabolic activity and increase of doubling times of the bacterial cells in CF lungs are responsible for some of the tolerance to antibiotics. Conventional resistance mechanisms, such as chromosomal β-lactamase, upregulated efflux pumps, and mutations of antibiotic target molecules in the bacteria, also contribute to the survival of P. aeruginosa biofilms. Biofilms can be prevented by early aggressive antibiotic prophylaxis or therapy, and they can be treated by chronic suppressive therapy.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Boucher RC. New concepts of the pathogenesis of cystic fibrosis lung disease. Eur. Resp. J.23(1),146–158 (2007).▪ Survey of the genetics and pathophysiology of cystic fibrosis (CF).
    • Høiby N, Johansen HK, Moser C, Song ZJ, Ciofu O, Kharazmi A: Pseudomonas aeruginosa and the biofilm mode of growth. Microbes Infect.3,1–13 (2001).
    • Armstrong DS, Grimwood K, Carzino R, Carlin JB, Olinsky A, Phelan PD: Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. BMJ310(6994),1571–1572 (1995).
    • Armstrong DS, Hook SM, Jamsen KM et al.: Lower airway inflammation in infants with cystic fibrosis detected by newborn screening. Ped. Pulmonol.40,500–510 (2005).
    • Frederiksen B, Koch C, Høiby N: The changing epidemiology of Pseudomonas aeruginosa infection in Danish cystic fibrosis patients, 1974–1995. Ped. Pulmonol.28,159–166 (1999).▪ First report showing the effect of prevention and treatment of chronic Pseudomonas aeruginosa biofilm lung infection.
    • Hoffmann N, Rasmussen TB, Jensen PØ et al.: Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect. Immun.73,2504–2514 (2005).▪▪ New mouse model of chronic P. aeruginosa lung infection.
    • Høiby N: P. aeruginosa in cystic fibrosis patients resists host defenses, antibiotics. Microbe (ASM)1(12),571–577 (2006).
    • Jelsbak L, Johansen HK, Frost A-L et al.: Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect. Immun.75,2214–2224 (2007).
    • Bjarnsholt T, Jensen PØ, Fiandaca MJ et al.: Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Ped. Pulmonol.44,547–558 (2009).▪ First report showing the P. aeruginosa biofilms in the respiratory and conductive zones of the CF lungs.
    • 10  Armstrong DS, Grimwood K, Carlin JB et al.: Lower airway inflammation in infants and young children with cystic fibrosis. Am. J. Respir. Crit. Care Med.156(4),1197–1204 (1997).
    • 11  Kolpen M, Hansen CR, Bjarnsholt T et al.: Polymorphonuclear leukocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax65,57–62 (2010).▪ First report showing the activity of polymorphonuclear leukocytes in sputum of CF patients.
    • 12  Miller RA, Britigan BE: Role of oxidants in microbial pathophysiology. Clin. Microbiol. Rev.10,1–18 (1997).
    • 13  Egestein A, Schmidt A, Herwald H: Trends in Innate Immunity. Schmidt A, Herwald H (Eds). Karger, Basel, Switzerland (2008).
    • 14  Hull J, Vervaart P, Grimwood K, Phelan P: Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax52(6),557–560 (1997).
    • 15  Mathee K, Ciofu O, Sternberg C et al.: Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology145,1349–1357 (1999).
    • 16  Ciofu O, Johanneson M, Hermansen NO, Meyer P, Høiby N: Investigation of the algT operon sequence in mucoid and non-mucoid P. aeruginosa isolates from 115 Scandinavian patients with cystic fibrosis and in 88 in vitro revertants. Microbiology154,103–113 (2008).
    • 17  Ciofu O, Mandsberg LF, Bjarnsholt T, Wassermann T, Høiby N: Genetic adaptation of P. aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogenous genetic backgrounds emerge in mucA and/or lasR mutants. Microbiology156,1108–1119 (2010).
    • 18  Boucher JC, Martinezsalazar J, Schurr MJ, Mudd MH, Yu H, Deretic V: Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA: J. Bacteriol.178(2),511–523 (1996).
    • 19  Bragonzi A, Wiehlmann L, Klockgether J et al.: Sequence diversity of the mucoid mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology152,3261–3269 (2006).
    • 20  Song ZJ, Wu H, Ciofu O et al.: Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection. J. Med. Microbiol.52(9),731–740 (2003).
    • 21  Ciofu O, Riis B, Pressler T, Poulsen HE, Høiby N: Occurrence of hypermutable P. aeruginosa in cystic fibrosis patients is associates with the oxidative stress caused by chronic lung inflammation. Antimicrob. Agents Chemother.49,2276–2282 (2005).▪ Report of hypermutators of P. aeruginosa in CF sputum.
    • 22  Bjarnsholt T, Jensen PØ, Rasmussen TB et al.: Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology151,3873–3880 (2005).▪ Report showing the effect of blocking quorum sensing in vivo.
    • 23  Bjarnsholt T, Jensen P-Ø, Burmølle M et al.: Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology151,373–383 (2005).
    • 24  Jensen PØ, Bjarnsholt T, Phipps R et al.: Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology153,1329–1338 (2007).▪ Report showing the protection of biofilm by quorum sensing regulated rhamnolipid.
    • 25  Hoffmann N, Lee B, Hentzer M et al.: Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary gowth phase killing of P. aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr-/- mice. Antimicrob. Agents Chemother.51,3677–3687 (2007).
    • 26  Westh JB: Pulmonary Physiology and Pathophysiology. Lippincott Williams & Wilkins, PA, USA (2001).
    • 27  Levy J, Smith AL, Koup JR, Williams-Warren J, Ramsey B: Disposition of tobramycin in patients with cystic fibrosis: a prospective controlled study. J. Pediat.105,117–124 (1984).
    • 28  Ramsey BW, Pepe MS, Quan JM et al.: Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. N. Engl. J. Med.340(1),23–30 (1999).
    • 29  Le Brun PPH: Optimization of Antibiotic Inhalation Therapy in Cystic Fibrosis. Studies on Nebulized Tobramycin. Development of a Colistin Dry Powder Inhaler System. University of Groningen, Groningen, Holland (2001).
    • 30  Gibson RL, Emerson J, McNamara S et al.: Significant microbiological effect of inhaled tobramycin in young children with cystic fibrosis. Am. J. Respir. Crit. Care Med.167(6),841–849 (2003).
    • 31  Geller DE, Pitlick WH, Nardella PA, Tracewell WG, Ramsey BW: Pharmacokinetics and bioavailability of aerosolized tobramycin in cystic fibrosis. Chest122(1),219–226 (2002).
    • 32  Ratjen F, Rietschel E, Kasel D et al.: Pharmacokinetics of inhaled colistin in patients with cystic fibrosis. J. Antimicrob. Chemother.57,306–311 (2006).
    • 33  Permin H, Koch C, Høiby N, Christensen HO, Møller AF, Møller S: Ceftazidime treatment of chronic Pseudomonas aeruginosa respiratory tract infection in cystic fibrosis. J. Antimicrob. Chemother.12(Suppl. A),313–323 (1983).
    • 34  Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T: Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the prm and mexABoprM genes. Mol. Microbiol.68,223–240 (2008).
    • 35  Jensen T, Pedersen SS, Garne S, Heilmann C, Høiby N, Koch C: Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J. Antimicrob. Chemother.19,831–838 (1987).
    • 36  Valerius NH, Koch C, Høiby N: Prevention of chronic Pseudomonas-aeruginosa colonisation in cystic fibrosis by early treatment. Lancet338(8769),725–726 (1991).
    • 37  Cedergren J, Follin P, Forslund T, Lindmark M, Sundquist T, Skogh T: Inducible nitric oxide synthase (NOS II) is constitutive in human neutrophils. APMIS111,963–968 (2003).
    • 38  Hassett DJ, Cuppoletti J, Trapnell B et al.: Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Advan. Drug Delivery Rev.54(11),1425–1443 (2002).
    • 39  Pedersen SS, Kharazmi A, Espersen F, Høiby N: Pseudomonas-aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect. Immun.58(10),3363–3368 (1990).
    • 40  Pedersen SS, Espersen F, Høiby N, Jensen T: Immunoglobulin A and immunoglobulin G antibody responses to alginates from Pseudomonas aeruginosa in cystic fibrosis. J. Clin. Microbiol.28,747–755 (1990).
    • 41  Pedersen SS, Møller H, Espersen F, Sørensen CH, Jensen T, Høiby N: Mucosal immunity to Pseudomonas-aeruginosa alginate in cystic fibrosis. APMIS100(4),326–334 (1992).
    • 42  Craig A, Mai J, Cai S, Jeyaseelan S: Neutrophil recruitement to the lungs during bacterial pneumonia. Infect. Immun.77,568–575 (2009).
    • 43  Goldstein W, Döring G: Lysosomal enzymes from polymorphonuclear leukocytes and proteinase inhibitors in patients with cystic fibrosis. Am. Rev. Respir. Dis.134,49–56 (1986).
    • 44  Bruce MC, Poncz L, Klinger JD, Stern RC, Tomashefski JF, Dearborn DG: Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis. Am. Rev. Respir. Dis.132,529–535 (1985).
    • 45  Ammitzbøll T, Pedersen SS, Espersen F, Schiøler H: Excretion of urinary collagen metabolites correlates to severity of pulmonary disease in cystic fibrosis. Acta Paediatr. Scand.77,842–846 (1988).
    • 46  Johansen HK: Potential of preventing Pseudomonas aeruginosa lung infections in cystic fibrosis patients: experimental studies in animals. APMIS104(Suppl. 63),5–42 (1996).
    • 47  Moser C, Kjærgaard S, Pressler T, Kharazmi A, Koch C, Høiby N: The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type. APMIS108,329–335 (2000).
    • 48  Tiddens HAWM: Detecting early structural lung damage in cystic fibrosis. Ped. Pulmonol.34,228–231 (2002).
    • 49  Jensen PØ, Bjarnsholt T, Phipps R et al.: Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology153,1329–1338 (2007).
    • 50  Worlitzsch D, Tarran R, Ulrich M et al.: Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest.109(3),317–325 (2002).
    • 51  Høiby N: Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. A survey. Acta Pathol. Microbiol. Scand. Suppl.262(Suppl. C),3–96 (1977).
    • 52  Haussler S, Tummler B, Weissbrodt H, Rohde M, Steinmetz I: Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin. Infect. Dis.29(3),621–625 (1999).
    • 53  Haussler S: Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ. Microbiol.6(6),546–551 (2004).
    • 54  Rainey PB, Travisano M: Adaptive radiation in a heterogenous environment. Nature394,69–72 (1998).
    • 55  Wyckoff TJO, Thomas B, Hassett DJ, Wozniak DJ: Static growth of mucoid Pseudomonas aeruginosa selects for non-mucoid variants that have acquired flagellum-dependent motility. Microbiology148,3423–3430 (2002).
    • 56  Spiers AJ, Buckling A, Rainey PB: The causes of Pseudomonas diversity. Microbiology146,2345–2350 (2000).
    • 57  Yang L, Haagensen JAJ, Jelsbak L et al.: In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infection. J. Bacteriol.190,2767–2776 (2008).▪ First report measuring the growth rate of P. aeruginosain vivo.
    • 58  Lee B, Haagensen JAJ, Ciofu O, Andersen JB, Høiby N, Molin S: Heterogeneity of biofilms formed by non-mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J. Clin. Microbiol.43,5247–5255 (2005).
    • 59  Pedersen SS, Høiby N, Espersen F, Koch C: Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax47,6–13 (1992).
    • 60  Moser C, van Gennip M, Bjarnsholt T et al.: Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host–pathogen interactions in cystic fibrosis. APMIS117,95–107 (2009).
    • 61  Lee B, Schjerling CK, Kirkby N et al.: Mucoid Pseudomonas aeruginosa maintain the in vitro biofilm formation capacity and show a conserved gene expression profile compared to the paired non-mucoid isolates during the chronic lung infection of patients with cystic fibrosis. Clin. Microbiol. Infect. (2010) (In press).
    • 62  Matsui H, Verghese MW, Kesimer M et al.: Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on epithelial surfaces. J. Immunol.175,1090–1099 (2005).
    • 63  Shah PL, Scott SF, Fuchs HJ, Geddes DM, Hodson ME: Medium term treatment of stable stage cystic fibrosis with recombinant human DNase I. Thorax50(4),333–338 (1995).
    • 64  Brandt T, Breitenstein S, Vonderhardt H, Tummler B: DNA concentration and length in sputum of patients with cystic fibrosis during inhalation with recombinant human DNase. Thorax50(8),880–882 (1995).
    • 65  Ratjen F, Tummler B: Comparison of the in vitro and in vivo response to inhaled DNase in patients with cystic fibrosis. Thorax54(1),91 (1999).
    • 66  Szaff M, Høiby N, Flensborg EW: Frequent antibiotic therapy improves survival of cystic fibrosis patients with chronic Pseudomonas aeruginosa infection. Acta Paediat. Scand.72,651–657 (1983).
    • 67  Anwar H, Strap JL, Chen K, Costerton JW: Dynamic interactions of biofilms of mucoid Pseudomonas-aeruginosa with tobramycin and piperacillin. Antimicrob. Agents Chemother.36(6),1208–1214 (1992).
    • 68  Anwar H, Strap JL, Costerton JW: Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob. Agents Chemother.36,1347–1351 (1992).
    • 69  Smith AL, Fiel SB, MayerHamblett N, Ramsey B, Burns JL: Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration – lack of association in cystic fibrosis. Chest123(5),1495–1502 (2003).
    • 70  Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS: Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob. Agents Chemother.48(7),2659–2664 (2004).
    • 71  Keren I, Kaldalu N, Spoering A, Wang YP, Lewis K: Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett.230(1),13–18 (2004).
    • 72  Moskowitz SM, Foster JM, Emerson J, Burns JL: Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J. Clin. Microbiol.42(5),1915–1922 (2004).
    • 73  Haagensen J, Klausen M, Ernst RK et al.: Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J. Bacteriol.189,28–37 (2007).
    • 74  Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O: Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents35,322–332 (2010).▪ Survey of the antibiotic resistance mechanisms of P. aeruginosa biofilms.
    • 75  Ciofu O, Fussing V, Bagge N, Koch C, Høiby N: Characterization of paired mucoid/non-mucoid Pseudomonas aeruginosa isolates from Danish cystic fibrosis patients: antibiotic resistance, beta-lactamase activity and RiboPrinting. J. Antimicrob. Chemother.48(3),391–396 (2001).
    • 76  Giwercman B, Lambert PA, Rosdahl VT, Shand GH, Høiby N: Rapid emergence of resistance in Pseudomonas-aeruginosa in cystic fibrosis patients due to in vivo selection of stable partially derepressed β-lactamase producing strains. J. Antimicrob. Chemother.26(2),247–259 (1990).
    • 77  Giwercman B, Meyer C, Lambert PA, Reinert C, Høiby N: High-level β-lactamase activity in sputum samples from cystic fibrosis patients during antipseudomonal treatment. Antimicrob. Agents Chemother.36(1),71–76 (1992).
    • 78  Dibdin GH, Assinder SJ, Nichols WW, Lambert PA: Mathematical model of β-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released β-lactamases. J. Antimicrob. Chemother.38(5),757–769 (1996).
    • 79  Denton M, Littlewood JM, Brownlee KG, Conway SP, Todd NJ: Spread of β-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis unit. Lancet348(9041),1596–1597 (1996).
    • 80  Bagge N, Ciofu O, Hentzer M, Campbell JIA, Givskov M, Høiby N: Constitutive high expression of chromosomal β-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD: Antimicrob. Agents Chemother.46(11),3406–3411 (2002).
    • 81  Jalal S, Ciofu O, Høiby N, Gotoh N, Wretlind B: Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob. Agents Chemother.44(5),710–712 (2000).
    • 82  Saiman L, Mehar F, Niu WW et al.: Antibiotic susceptibility of multiply resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis, including candidates for transplantation. Clin. Infect. Dis.23(3),532–537 (1996).
    • 83  Westbrock B, Wadman S, Sherman DR et al.: Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob. Agents Chemother.43(12),2975–2983 (1999).
    • 84  Burns JL, VanDalfsen JM, Shawar RM et al.: Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. J. Infect. Dis.179(5),1190–1196 (1999).
    • 85  MacLeod DL, Nelson LE, Shawar RM et al.: Aminoglycoside-resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment. J. Infect. Dis.181(3),1180–1184 (2000).
    • 86  Islam S, Oh H, Jalal S, Ciofu O, Høiby N, Wretlind B: Chromosomal resistance mechanisms fo aminoglycosides in Pseudomonas aeruginosa cystic fibrosis isolates. Clin. Microbiol. Infect.15,60–66 (2009).
    • 87  Denton M, Kerr K, Mooney L et al.: Transmission of colistin-resistant Pseudomonas aeruginosa between patients attending a pediatric cystic fibrosis center. Pediatr. Pulmonol.34,257–261 (2002).
    • 88  Moskowitz SM, Ernst RK, Miller SI: PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J. Bacteriol.186(2),575–579 (2004).
    • 89  Johansen HK, Moskowitz SM, Ciofu O, Pressler T, Høiby N: Spread of colistin-resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. J. Cystic Fibrosis7,391–397 (2008).
    • 90  Bagge N, Ciofu O, Skovgaard LT, Høiby N: Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal beta-lactamase. APMIS108(9),589–600 (2000).
    • 91  Bagge N, Hentzer M, Andersen JB, Ciofu O, Givskov M, Høiby N: Dynamics and spatial distribution of β-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother.48(4),1168–1174 (2004).
    • 92  Bagge N, Schuster M, Hentzer M et al.: Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrob. Agents Chemother.48(4),1175–1187 (2004).
    • 93  Oliver A, Canton R, Campo P, Baquero F, Blazquez J: High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science288(5469),1251–1253 (2000).▪ First report of hypermutators of P. aeruginosa in CF.
    • 94  Mandsberg LF, Ciofu O, Kirkby N, Christiansen LE, Poulsen HE, Høiby N: Antibiotic resistance in P. aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob. Agents Chemother.53,2483–2491 (2009).
    • 95  Oliver A, Baquero F, Blazquez J: The mismatch repair system (MutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol. Microbiol.43(6),1641–1650 (2002).
    • 96  Ciofu O, Mandsberg LF, Bjarnsholt T, Wassermann T, Høiby N: Genetic adaptation of P. aeruginosa during chronic lung infection: strong and weak mutators with heterogenous backgrounds emerge in mucA and/or lasR mutants. Microbiology156,1108–1119 (2010).
    • 97  Macia MD, Borrell N, Perez JL, Oliver A: Detection and susceptibility testing of hypermutable Pseudomonas aeruginosa strains with the Etest and disk diffusion. Antimicrob. Agents Chemother.48(7),2665–2672 (2004).
    • 98  Macia MD, Blanquer D, Togores B, Sauleda J, Perez JL, Oliver A: Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob. Agents Chemother.49(8),3382–3386 (2005).
    • 99  Driffield K, Miller K, Bostock M, O’Neill AJ, Chopra I: Increased mutability of Pseudomonas aeruginosa in biofilms. J. Antimicrob. Chemother.61,1053–1056 (2008).
    • 100  Stover CK, Pham XQ, Erwin AL et al.: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406(6799),959–964 (2000).
    • 101  Smith EE, Buckley DG, Wu Z et al.: Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl Acad. Sci. USA1–6 (2006).
    • 102  Döring G, Høiby N: Early intervention and prevention of lung disease in cystic fibrosis: a European consensus. J. Cystic Fibrosis3,67–91 (2004).
    • 103  Proesmans M, Balinska-Miskiewicz W, Dupont L et al.: Evaluating the “Leeds criteria” for Pseudomonas aeruginosa infection in a cystic fibrosis centre. Eur. Resp. J.27,937–943 (2006).
    • 104  Pressler T, Frederiksen B, Skov M, Garred P, Koch C, Høiby N: Early rise of anti-Pseudomonas antibodies and a mucoid phenotype of Pseudomonas aeruginosa are risk factors for development of chronic lung infection – a case control study. J. Cystic Fibrosis5,9–15 (2006).
    • 105  Høiby N, Frederiksen B, Pressler T: Eradication of early Pseudomonas aeruginosa infection. J. Cystic Fibrosis4,49–54 (2005).
    • 106  Hansen CR, Pressler T, Høiby N: Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience. J. Cystic Fibrosis7,523–530 (2008).
    • 107  Döring G, Conway SP, Heijerman HGM et al.: Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur. Resp. J.16,749–767 (2000).
    • 108  Rasmussen TB, Bjarnsholt T, Skindersoe ME et al.: Screening for quorum sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J. Bacteriol.187,1799–1814 (2005).
    • 109  Parks QM, Young RL, Poch KR, Malcolm KC, Vasil ML, Nick JA: Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy. J. Med. Microbiol.58,492–502 (2009).
    • 110  Tolker-Nielsen T, Høiby N: Extracellular DNA and F-actin as targets in anti-biofilm CF therapy. Future Microbiol.4,645–647 (2009).
    • 111  Ciofu O, Petersen TD, Jensen P, Høiby N: Avidity of anti-P aeruginosa antibodies during chronic infection in patients with cystic fibrosis. Thorax54(2),141–144 (1999).
    • 112  Ciofu O, Bagge N, Høiby N: Antibodies against β-lactamase can improve ceftazidime treatment of lung infection with β-lactam-resistant Pseudomonas aeruginosa in a rat model of chronic lung infection. APMIS110(12),881–891 (2002).
    • 113  Ciofu O: Pseudomonas aeruginosa chromosomal β-lactamase in patients with cystic fibrosis and chronic lung infection – mechanism of antibiotic resistance and target of the humoral immune response. APMIS111,4–47 (2003).
    • 114  Kobayashi H: Biofilm disease: its clinical manifestation and therapeutic possibilities of macrolides. Am. J. Med.99(Suppl. 6A Pt 1),S26–S30 (1995).
    • 115  Tateda K, Comte R, Pechere JC, Kohler T, Yamaguchi K, VanDelden C: Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob. Agents Chemother.45(6),1930–1933 (2001).