Skip to main content
Log in

High Thermoelectric Performance of Dually Doped ZnO Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A marked improvement in the thermoelectric performance of dense ZnO ceramics is achieved by employing a third element as a co-dopant with Al. Dual doping of ZnO with Al and Ga results in a drastic decrease in the thermal conductivity of the oxide, while the decrease in the electrical conductivity is relatively small. With the aid of a significant enhancement in the thermopower, the dually doped oxide shows thermoelectric figure of merit values, ZT, values of 0.47 at 1000 K and 0.65 at 1247 K at the composition Zn0.96Al0.02Ga0.02O. These results appear to be the highest ZT values so far reported for bulk n-type oxides. Microscopic observation of the samples reveals a granular texture in the densely sintered oxide matrix, suggesting that considerable reduction of the thermal conductivity while maintaining high electrical conductivity could be achieved by such a bulk nanocomposite structure in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ohtaki, D. Ogura, K. Eguchi, and H. Arai, J. Mater. Chem., 4, 653 (1994). doi:10.1039/jm9940400653.

    Article  CAS  Google Scholar 

  2. M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, and H. Arai, J. Solid State Chem., 120, 105 (1995). doi:10.1006/jssc.1995.1384.

    Article  ADS  CAS  Google Scholar 

  3. M. Ohtaki, T. Tokunaga, K. Eguchi, and H. Arai, Proceedings of the 16th International Conference on Thermoelectrics (ICT 1997), IEEE Catalog Number 97TH8291 (IEEE, Piscataway, 1997), p. 224.

  4. D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, and K. Koumoto, J. Appl. Phys., 100, 084911 (2006). doi:10.1063/1.2362922.

    Article  ADS  Google Scholar 

  5. X. Y. Huang, Y. Miyazaki, and T. Kajitani, Solid State Commun., 145, 132 (2008). doi:10.1016/j.ssc.2007.10.012.

    Article  ADS  CAS  Google Scholar 

  6. M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys., 79, 1816 (1996). doi:10.1063/1.360976.

    Article  ADS  CAS  Google Scholar 

  7. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem., 7, 85 (1997). doi:10.1039/a602506d.

    Article  CAS  Google Scholar 

  8. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, Proceedings of the 16th International Conference on Thermoelectrics (ICT 1997) (IEEE, Piscataway, 1997), p. 240.

  9. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem., 8, 409 (1998). doi:10.1039/a706213c.

    Article  CAS  Google Scholar 

  10. M. Ohtaki, T. Tsubota, and K. Eguchi, Proceedings of the 17th International Conference on Thermoelectrics (ICT 1998) (IEEE, Piscataway, 1998), p. 610.

  11. H. Ohta, W. S. Seo, and K. Koumoto, J. Am. Ceram. Soc., 79, 2193, (1996).) doi:10.1111/j.1151-2916.1996.tb08958.x.

    Article  CAS  Google Scholar 

  12. M. Kazeoka, H. Hiramatsu, W.-S. Seo, and K. Koumoto, J. Mater. Res., 13, 523 (1998). doi:10.1557/JMR.1998.0067.

    Article  ADS  CAS  Google Scholar 

  13. H. Kaga, R. Asahi, and T. Tani, Jpn. J. Appl. Phys., 43, 7133 (2004). doi:10.1143/JJAP.43.7133.

    Article  ADS  CAS  Google Scholar 

  14. H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloy. Comp., 350, 292 (2003). doi:10.1016/S0925-8388(02)00972-6.

    Article  CAS  Google Scholar 

  15. H. Obara, A. Yamamoto, C.-H. Lee, K. Kobayashi, A. Matsumoto, and R. Funahashi, Jpn. J. Appl. Phys., 43, L540 (2004). doi:10.1143/JJAP.43.L540.

    Article  ADS  CAS  Google Scholar 

  16. T. Okuda, N. Nakanishi, S. Miyasaka, and Y. Tokura, Phys. Rev. B, 63, 113104 (2001). doi:10.1103/PhysRevB.63.113104.

    Article  ADS  Google Scholar 

  17. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys., 97, 034106 (2005). doi:10.1063/1.1847723.

    Article  ADS  Google Scholar 

  18. S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, and K. Koumoto, Appl. Phys. Lett., 87, 092108 (2005). doi:10.1063/1.2035889.

    Article  ADS  Google Scholar 

  19. S. Ohta, H. Ohta, and K. Koumoto, J. Ceram. Soc. Jpn., 114, 102 (2006). doi:10.2109/jcersj.114.102.

    Article  CAS  Google Scholar 

  20. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B, 56, R12685 (1997). doi:10.1103/PhysRevB.56.R12685.

    Article  ADS  CAS  Google Scholar 

  21. K. Fujita, T. Mochida, and K. Nakamura, Jpn. J. Appl. Phys., 40, 4644 (2001). doi:10.1143/JJAP.40.4644.

    Article  ADS  CAS  Google Scholar 

  22. R. Funahashi, M. Shikano, Appl. Phys. Lett., 81, 1459 (2002). doi:10.1063/1.1502190.

    Article  ADS  CAS  Google Scholar 

  23. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka, Jpn. J. Appl. Phys., 39, L1127 (2000). doi:10.1143/JJAP.39.L1127.

    Article  ADS  CAS  Google Scholar 

  24. E. Maeda and M. Ohtaki, Trans. Mater. Res. Soc. Jpn., 25, 237 (2000).

    CAS  Google Scholar 

  25. M. Ito, T. Nagira, D. Furumoto, S. Katsuyama, and H. Nagai, Scr. Mater., 48, 403 (2003). doi:10.1016/S1359-6462(02)00443-8.

    Article  CAS  Google Scholar 

  26. D. Wang, L. Cheng, and Q. Yao, J. Li, Solid State Commun., 129, 615 (2004). doi:10.1016/j.ssc.2003.11.045.

    Article  ADS  CAS  Google Scholar 

  27. M. Ohtaki and R. Hayashi, Proceedings of the 25th International Conference on Thermoelectrics (ICT 2006) (IEEE, Piscataway, 2006), pp. 276–279.

  28. M. Ohtaki, R. Hayashi, and K. Araki, Proceedings of the 26th International Conference on Thermoelectrics (ICT 2007) (IEEE, Piscataway, 2008), p. 112.

  29. D. Berardan, E. Guilmeau, A. Maignan, and B. Raveau, Solid State Commun., 146, 97 (2008). doi:10.1016/j.ssc.2007.12.033.

    Article  ADS  CAS  Google Scholar 

  30. K. Shirouzu, T. Ohkusa, M. Hotta, N. Enomoto, and J. Hojo, J. Ceram. Soc. Jpn., 115, 254 (2007). doi:10.2109/jcersj.115.254.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michitaka Ohtaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtaki, M., Araki, K. & Yamamoto, K. High Thermoelectric Performance of Dually Doped ZnO Ceramics. J. Electron. Mater. 38, 1234–1238 (2009). https://doi.org/10.1007/s11664-009-0816-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0816-1

Keywords

Navigation