Skip to main content
Log in

Synchronization of four coupled van der Pol oscillators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

It is possible that self-excited vibrations in turbomachine blades synchronize due to elastic coupling through the shaft. The synchronization of four coupled van der Pol oscillators is presented here as a simplified model. For quasilinear oscillations, a stability condition is derived from an analysis based on linearizing the original equation around an unperturbed limit cycle and transforming it into Hill’s equation. For the nonlinear case, numerical simulations show the existence of two well-defined regions of phase relationships in parameter space in which a multiplicity of periodic attractors is embedded. The size of these regions strongly depends on the values of the oscillator and coupling constants. For the coupling constant below a critical value, there exists a region in which a diversity of phase-shift attractors is present, whereas for values above the critical value an in-phase attractor is predominant. It is observed that the presence of an anti-phase attractor in the subcritical region is associated with sudden changes in the period of the coupled oscillators. The convergence of the coupled system to a particular periodic attractor is explored using several initial conditions. The study is extended to non-identical oscillators, and it is found that there is synchronization even over a wide range of difference among the oscillator constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    Article  Google Scholar 

  2. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization, a Universal Concept in Nonlinear Sciences. Cambridge University Press, London (2001)

    MATH  Google Scholar 

  3. Strogatz, S.H.: Sync: The Emerging Science of Spontaneous Order. Theia, New York (2003)

    Google Scholar 

  4. Kawahara, T.: Coupled van der Pol oscillators—a model of excitatory and inhibitory neural interactions. Biol. Cybern. 39(1), 37–43 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fukuda, H., Tamari, N., Morimura, H., Kai, S.: Entrainment in a chemical oscillator chain with a pacemaker. J. Phys. Chem. A 109(49), 11250–11254 (2005)

    Article  Google Scholar 

  6. Cai, W., Sen, M.: Synchronization of thermostatically controlled first-order systems. Int. J. Heat Mass Transf. 51(11–12), 3032–3043 (2008)

    Article  MATH  Google Scholar 

  7. Woafo, P., Kadji, H.G.: Synchronized states in a ring of mutually coupled self-sustained electrical oscillators. Phys. Rev. E 69(046206), 1–9 (2004)

    Google Scholar 

  8. Huygens, C.: Letter to de Sluse. Letter No. 1333 of February 24, 1665, page 241. In: Oeuvres Complète de Christiaan Huygens. Correspondence, vol. 5, pp. 1664–1665. Société Hollandaise des Sciences, Martinus Nijhoff, La Haye (1893)

    Google Scholar 

  9. Bennett, M., Schatz, M.F., Rockwood, H., Wiesenfeld, K.: Huygens’s clocks. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 458(2019), 563–579 (2002)

    MATH  MathSciNet  Google Scholar 

  10. Dimentberg, M., Cobb, E., Mensching, J.: Self-synchronization of transient rotations in multiple-shaft systems. J. Vib. Control 7(2), 221–232 (2001)

    Article  MATH  Google Scholar 

  11. Balthazar, J.M., Felix, J.L.P., Brasil, R.M.: Some comments on the numerical simulation of self-synchronization of four non-ideal exciters. Appl. Math. Comput. 164(2), 615–625 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Katayama, N., Takata, G., Miyake, M., Nanahara, T.: Theoretical study on synchronization phenomena of wind turbines in a wind farm. Electr. Eng. Jpn. 155(1), 9–18 (2006)

    Article  Google Scholar 

  13. Liew, K.M., Wang, W.Q., Zhang, L.W., He, X.Q.: A computational approach for predicting the hydroelasticity of flexible structures based on the pressure Poisson equation. Int. J. Numer. Methods Eng. 72(13), 1560–1583 (2007)

    Article  MathSciNet  Google Scholar 

  14. Gabbai, R.D., Benaroya, H.: An overview of modeling and experiments of vortex-induced vibration of circular cylinders. J. Sound Vib. 282(3-5), 575–616 (2005)

    Article  Google Scholar 

  15. Facchinetti, M.L., de Langre, E., Biolley, F.: Vortex shedding modeling using diffusive van der Pol oscillators. C.R. Mec. 330(7), 451–456 (2002)

    Article  MATH  Google Scholar 

  16. Facchinetti, M.L., de Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19, 123–140 (2004)

    Article  Google Scholar 

  17. Mathelin, L., de Langre, E.: Vortex-induced vibrations and waves under shear flow with a wake oscillator model. Eur. J. Mech. B: Fluids 24(4), 478–490 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Violette, R., de Langre, E., Szydlowski, J.: Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments. Comput. Struct. 85(11–14), 1134–1141 (2006)

    Google Scholar 

  19. van der Pol, B., van der Mark, J.: The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Philos. Mag. 6(38), 763–775 (1928)

    Google Scholar 

  20. Ablowitz, R.: The theory of emergence. Philos. Sci. 6(1), 1–16 (1939)

    Article  Google Scholar 

  21. Aggarwal, J.K., Richie, C.G.: On coupled van der Pol oscillators. IEEE Trans. Circuit Theory CT13(4), 465–466 (1966)

    Article  MathSciNet  Google Scholar 

  22. Storti, D.W., Rand, R.H.: A simplified model of two coupled relaxation oscillators. Int. J. Non-Linear Mech. 22(4), 283–289 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Storti, D.W., Reinhall, P.G.: Phase-locked mode stability for coupled van der Pol oscillators. ASME J. Vib. Acoust. 122(3), 318–323 (2000)

    Article  Google Scholar 

  24. Bakri, T., Nabergoj, R., Tondl, A.: Multi-frequency oscillations in self-excited systems. Nonlinear Dyn. 48(1–2), 115–127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ookawara, T., Endo, T.: Effects of the deviation of element values in a ring of three and four coupled van der Pol oscillators. IEEE Trans. Circuits Syst. 46, 827–840 (1999)

    Article  Google Scholar 

  26. Hasegawa, A., Endo, T.: Multimode oscillations in a four fully-interconnected van der Pol oscillators. In: Proceedings of the 2001 International Symposium on Circuits and Systems, Sydney, Australia (2001)

  27. Endo, T., Mori, S.: Mode analysis of a ring of a large number of mutually coupled van der Pol oscillators. IEEE Trans. Circuits Syst. CAS-25(1), 7–18 (1978)

    Article  Google Scholar 

  28. Reinhall, P.G., Storti, D.W.: A numerical investigation of phase-locked and chaotic behavior of coupled van der Pol oscillators. In: Proceedings of the 1995 ASME Design Engineering Technical Conference, Boston, MA (1995)

  29. Aronson, D.G., Ermentrout, G.B., Koplell, N.: Amplitude response of coupled oscillators. Physica D 41, 403–449 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nana, B., Woafo, P.: Synchronization in a ring of four mutually coupled van der Pol oscillators: theory and experiment. Phys. Rev. E 74(4), 1–8 (2006)

    Article  Google Scholar 

  31. Rand, R., Wong, J.: Dynamics of four coupled phase-only oscillators. Commun. Nonlinear Sci. Numer. Simul. 13(3), 501–507 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  33. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos: Geometrical Methods for Engineers and Scientists. Wiley, New York (1986)

    MATH  Google Scholar 

  34. Farkas, M.: Periodic Motions. Springer, New York (1994)

    MATH  Google Scholar 

  35. Magnus, W., Winkler, S.: Hill’s Equation. Interscience, New York (1966)

    MATH  Google Scholar 

  36. Moore, G.: Floquet theory as a computational tool. SIAM J. Numer. Anal. 42(6), 2522–2568 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Cai, W., Sen, M., Yang, K.T., McClain, R.L.: Synchronization of self-sustained thermostatic oscillations in a thermal-hydraulic network. Int. J. Heat Mass Transf. 49, 4444–4453 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Barrón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrón, M.A., Sen, M. Synchronization of four coupled van der Pol oscillators. Nonlinear Dyn 56, 357–367 (2009). https://doi.org/10.1007/s11071-008-9402-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9402-y

Keywords

Navigation