Skip to main content
Log in

A comparative study on finite element methods for dynamic fracture

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The performance of finite element methods for dynamic crack propagation in brittle materials is studied. Three methods are considered: the extended finite element method (XFEM), element deletion method and interelement crack method. The extended finite element method is a method for arbitrary crack propagation without remeshing. In element deletion methods, elements that meet a fracture criterion are deleted. In interelement crack methods, the crack is limited to element edges; the separation of these edges is governed by a cohesive law. We show that XFEM and interelement method show similar crack speeds and crack paths. However, both fail to predict a benchmark experiment without adjustment of the energy release rate. The element deletion method performs very poorly for the refinements studied, and is unable to predict crack branching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ravi-Chandar K and Knauss WG (1984). An experimental investigation into dynamic fracture: II. microstructural aspects. Int J Fract 26: 65–80

    Article  Google Scholar 

  2. Ravi-Chandar K and Knauss WG (1984). An experimental investigation into dynamic fracture: III. on steady-state crack propagation and crack branching. Int J Fract 26: 141–154

    Article  Google Scholar 

  3. Ravi-Chandar K (2004). Dynamic fracture. Elsevier, Boston

    Google Scholar 

  4. Marder M and Gross S (1995). Origin of crack tip instabilities. J Mech Phys Solids 43(1): 1–48

    Article  MathSciNet  MATH  Google Scholar 

  5. Belytschko T and Black T (1999). Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45(5): 601–620

    Article  MathSciNet  MATH  Google Scholar 

  6. Moës N, Dolbow J and Belytschko T (1999). A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1): 131–150

    Article  MATH  Google Scholar 

  7. Stolarska M, Chopp DL, Moës N and Belytschko T (2001). Modeling crack growth by level sets in the extended finite element method. Int J Numer Meth Eng 51(8): 943–960

    Article  MATH  Google Scholar 

  8. Belytschko T, Moës N, Usui S and Parimi C (2001). Arbitrary discontinuities in finite elements. Int J Numer Meth Eng 50(4): 993–1013

    Article  MATH  Google Scholar 

  9. Babuška I and Melenk JM (1997). The partition of unity method. Int J Numer Meth Eng 40(4): 727–758

    Article  MATH  Google Scholar 

  10. Belytschko T, Chen H, Xu J and Zi G (2003). Dynamic crack propagation based on loss of hyperbolicity with a new discontinuous enrichment. Int J Numer Meth Eng 58: 1873–1905

    Article  MATH  Google Scholar 

  11. Song J-H, Areias PMA and Belytschko T (2006). A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Meth Eng 67: 868–893

    Article  MATH  Google Scholar 

  12. Hansbo A and Hansbo P (2004). A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Meth Appl Mech Eng 193: 3523–3540

    Article  MathSciNet  MATH  Google Scholar 

  13. Areias PMA and Belytschko T (2006). A comment on the article: a finite element method for simulation of strong and weak discontinuities in solid mechanics. Comput Meth Appl Mech Eng 195: 1275–1276

    Article  MathSciNet  MATH  Google Scholar 

  14. Réthoré J, Gravouil A, Combescure A (2004) A stable numerical scheme for the finite element simulation of dynamic crack propagation with remeshing. Comput Meth Appl Mech Eng 193:42–44

    Article  Google Scholar 

  15. Réthoré J, Gravouil A and Combescure A (2005). An energy-conserving scheme for dynamic crack growth using the extended fnite element method. Int J Numer Meth Eng 63: 631–659

    Article  MATH  Google Scholar 

  16. Remmers JJC, Needleman A and Borst R   (2003). A cohesive segments method for the simulation of crack growth. Comput Mech 31: 69–77

    Article  MATH  Google Scholar 

  17. Xu X-P and Needleman A (1994). Numerical simulation of fast crack growth in brittle solids. J Mech Phys Solids 42(9): 1397–1434

    Article  MATH  Google Scholar 

  18. Camacho G and Ortiz M (1996). Computational modelling of impact damage in brittle materials. Int J Solids Struct 33: 2899–2938

    Article  MATH  Google Scholar 

  19. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, Cambridge. ISBN 0 521 32853 5

    MATH  Google Scholar 

  20. Hallquist JO (1998). LS-DYNA theory manual. Livemore software technology corporation, USA

    Google Scholar 

  21. Ortiz M and Pandolfi A (1999). A class of cohesive elements for the simulation of three-dimensional crack propagation. Int J Numer Meth Eng 44: 1267–1282

    Article  MATH  Google Scholar 

  22. Fineberg J, Gross SP, Marder M and Swinney HL (1991). Instability in dynamic fracture. Phys Rev Lett 67: 457–460

    Article  Google Scholar 

  23. Sharon E and Fineberg J (1999). Confirming the continuum theory of dynamic brittle fracture for fast cracks. Lett Nature 397: 333–335

    Article  Google Scholar 

  24. Ramulu M and Kobayashi AS (1985). Mechanics of crack curving and branching—a dynamic fracture analysis. Int J Fract 27: 187–201

    Article  Google Scholar 

  25. Ravi-Chandar K (1998). Dynamic fracture of nominally brittle materials. Int J Fract 90: 83–102

    Article  Google Scholar 

  26. Sharon E, Gross SP and Fineberg J (1995). Local crack branching as a mechanism for instability in dynamic fracture. Phys Rev Lett 74(25): 5096–5099

    Article  Google Scholar 

  27. Sharon E and Fineberg J (1996). Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54(10): 7128–7139

    Article  Google Scholar 

  28. Fineberg J, Sharon E and Cohen G (2003). Crack front waves in dynamic fracture. Int J Fract 119: 247–261

    Article  Google Scholar 

  29. Lemaitre J (1971) Evaluation of dissipation and damage in metal submitted to dynamic loading. In: Proceedings ICM 1

  30. Kalthoff JF, Winkler S (1987) Failure mode transition at high rates of shear loading. International conference on impact loading and dynamic behavior of materials, vol 1. pp 185–195

    Google Scholar 

  31. Decker RF (1979) Source book on maraging steels. American Society for Metals

  32. Lee YJ and Freund LB (1990). Fracture initiation due to asymmetric impact loading of an edge cracked plate. J Appl Mech ASME 57: 104–111

    Article  Google Scholar 

  33. Kalthoff JF (2000). Modes of dynamic shear failure in solids. Int J Fract 101: 1–31

    Article  Google Scholar 

  34. Sharon E, Gross SP and Fineberg J (1996). Energy dissipation in dynamic fracture. Phys Rev Lett 76(12): 2117–2120

    Article  Google Scholar 

  35. Bourdin B, Francfort GA and Marigo JJ (2000). Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4): 797–826

    Article  MathSciNet  MATH  Google Scholar 

  36. Rabczuk T and Belytschko T (2004). Cracking particles: a simplified meshfree method for arbitray evolving cracks. Int J Numer Meth Eng 61(13): 2316–2343

    Article  MATH  Google Scholar 

  37. Papoulia KD, Vavasis SA and Ganguly P (2006). Spatial convergence of crack nucleation using a cohesive finite-element model on a pinwhell-based mesh. Int J Numer Meth Eng 67: 1–16

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted Belytschko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, JH., Wang, H. & Belytschko, T. A comparative study on finite element methods for dynamic fracture. Comput Mech 42, 239–250 (2008). https://doi.org/10.1007/s00466-007-0210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-007-0210-x

Keywords

Navigation