Skip to main content

Advertisement

Log in

Pattern of Intra-Family Hetero-Oligomerization Involving the G-Protein-Coupled Secretin Receptor

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Oligomerization of G-protein-coupled receptors (GPCRs) is emerging as a mechanism for regulation and functional modification, although it has been studied most extensively for Family A receptors. Family B receptors have clear structural differences from Family A. In this paper, we have systematically evaluated GPCRs that are capable of association with the prototypic Family B secretin receptor. All of the receptor constructs were shown to traffic normally to the plasma membrane. We utilized receptor bioluminescence resonance energy transfer (BRET) to determine the presence of constitutive and ligand-dependent receptor association. Extensive intra-family and no cross-family association was observed. Of the nine Family B receptors studied, all constitutively yielded a significant BRET signal with the secretin receptor, except for the calcitonin receptor. Each of the associating hetero-oligomeric receptor pairs generated a BRET signal of similar intensity, less than that of homo-oligomeric secretin receptors. BRET signals from some receptor pairs were reduced by ligand occupation, but none were increased by this treatment. Thus, Family B GPCR oligomerization occurs, with many structurally related members associating with each other. The specific functional implications of this need to be further evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

BRET:

bioluminescence resonance energy transfer

CLR:

calcitonin receptor-like receptor

CTR:

calcitonin receptor

FRET:

fluorescence resonance energy transfer

GHRHR:

growth hormone releasing hormone receptor

GLP1R:

type 1 glucagon-like peptide receptor

GLP2R:

type 2 glucagon-like peptide receptor

PTH1R:

type 1 parathyroid hormone receptor

PTH2R:

type 2 parathyroid hormone receptor

Rlu:

Renilla luciferase

SecR:

secretin receptor

VIP:

vasoactive intestinal polypeptide

VPAC1R:

type 1 vasoactive intestinal polypeptide receptor

VPAC2R:

type 2 vasoactive intestinal polypeptide receptor

YFP:

yellow fluorescent protein

References

  • Cheng, Z. J., Harikumar, K. G., Holicky, E. L., & Miller, L. J. (2003). Heterodimerization of type A and B cholecystokinin receptors enhance signaling and promote cell growth. Journal of Biological Chemistry, 278, 52972–52979.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Z. J., & Miller, L. J. (2001). Agonist-dependent dissociation of oligomeric complexes of G protein-coupled cholecystokinin receptors demonstrated in living cells using bioluminescence resonance energy transfer. Journal of Biological Chemistry, 276, 48040–48047.

    PubMed  CAS  Google Scholar 

  • Cvejic, S., & Devi, L. A. (1997). Dimerization of the delta opioid receptor: Implication for a role in receptor internalization. Journal of Biological Chemistry, 272, 26959–26964.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, J. P., Berger, M. B., Lin, C. C., Schlessinger, J., Lemmon, M. A., & Ferguson, K. M. (2005). Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Molecular and Cellular Biology, 25, 7734–7742.

    Article  PubMed  CAS  Google Scholar 

  • Ding, W. Q., Cheng, Z. J., McElhiney, J., Kuntz, S. M., & Miller, L. J. (2002). Silencing of secretin receptor function by dimerization with a misspliced variant secretin receptor in ductal pancreatic adenocarcinoma. Cancer Research, 62, 5223–5229.

    PubMed  CAS  Google Scholar 

  • Dong, M., Lam, P. C., Gao, F., Hosohata, K., Pinon, D. I., Sexton, P. M., et al. (2007). Molecular Approximations between residues 21 and 23 of secretin and its receptor: Development of a model for peptide docking with the amino terminus of the secretin receptor. Molecular Pharmacology, 72, 280–290.

    Article  PubMed  CAS  Google Scholar 

  • Dong, M., & Miller, L. J. (2002). Molecular pharmacology of the secretin receptor. Receptors Channels, 8, 189–200.

    Article  PubMed  CAS  Google Scholar 

  • Hague, C., Lee, S. E., Chen, Z., Prinster, S. C., Hall, R. A., & Minneman, K. P. (2006). Heterodimers of alpha1B- and alpha1D-adrenergic receptors form a single functional entity. Molecular Pharmacology, 69, 45–55.

    PubMed  CAS  Google Scholar 

  • Harikumar, K. G., Dong, M., Cheng, Z., Pinon, D. I., Lybrand, T. P., & Miller, L. J. (2006a). Transmembrane segment peptides can disrupt cholecystokinin receptor oligomerization without affecting receptor function. Biochemistry, 45, 14706–14716.

    Article  PubMed  CAS  Google Scholar 

  • Harikumar, K. G., Morfis, M. M., Lisenbee, C. S., Sexton, P. M., & Miller, L. J. (2006b). Constitutive formation of oligomeric complexes between family B G protein-coupled vasoactive intestinal polypeptide and secretin receptors. Molecular Pharmacology, 69, 363–373.

    PubMed  CAS  Google Scholar 

  • Harikumar, K. G., Pinon, D. I., & Miller, L. J. (2007). Transmembrane segment four contributes a functionally-important interface for oligomerization of the class II G protein-coupled secretin receptor. Journal of Biological Chemistry, 282, 30363–30372.

    Article  PubMed  CAS  Google Scholar 

  • Lisenbee, C. S., Dong, M., & Miller, L. J. (2005). Paired cysteine mutagenesis to establish the pattern of disulfide bonds in the functional intact secretin receptor. Journal of Biological Chemistry, 280, 12330–12338.

    Article  PubMed  CAS  Google Scholar 

  • Lisenbee, C. S., Harikumar, K. G., & Miller, L. J. (2007). Mapping the architecture of secretin receptors with intramolecular fluorescence resonance energy transfer using acousto-optic tunable filter-based spectral imaging. Molecular Endocrinology, 21, 1997–2008.

    Article  PubMed  CAS  Google Scholar 

  • Lisenbee, C. S., & Miller, L. J. (2006). Secretin receptor oligomers form intracellularly during maturation through receptor core domains. Biochemistry, 45, 8216–8226.

    Article  PubMed  CAS  Google Scholar 

  • Milligan, G. (2004). G protein-coupled receptor dimerization: Function and ligand pharmacology. Molecular Pharmacology, 66, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Milligan, G. (2007). G protein-coupled receptor dimerisation: Molecular basis and relevance to function. Biochimica et Biophysica Acta, 1768, 825–835.

    Article  PubMed  CAS  Google Scholar 

  • Park, P. S., Filipek, S., Wells, J. W., & Palczewski, K. (2004). Oligomerization of G protein-coupled receptors: Past, present, and future. Biochemistry, 43, 15643–15656.

    Article  PubMed  CAS  Google Scholar 

  • Pascal, G., & Milligan, G. (2005). Functional complementation and the analysis of opioid receptor homodimerization. Molecular Pharmacology, 68, 905–915.

    PubMed  CAS  Google Scholar 

  • Rocheville, M., Lange, D. C., Kumar, U., Patel, S. C., Patel, R. C., & Patel, Y. C. (2000a). Receptors for dopamine and somatostatin: Formation of hetero-oligomers with enhanced functional activity. Science, 288, 154–157.

    Article  PubMed  CAS  Google Scholar 

  • Rocheville, M., Lange, D. C., Kumar, U., Sasi, R., Patel, R. C., & Patel, Y. C. (2000b). Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. Journal of Biological Chemistry, 275, 7862–7869.

    Article  PubMed  CAS  Google Scholar 

  • Salom, D., Lodowski, D. T., Stenkamp, R. E., Le Trong, I., Golczak, M., Jastrzebska, B., et al. (2006). Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 103, 16123–16128.

    Article  PubMed  CAS  Google Scholar 

  • Seck, T., Baron, R., & Horne, W. C. (2003). The alternatively spliced deltae13 transcript of the rabbit calcitonin receptor dimerizes with the C1a isoform and inhibits its surface expression. Journal of Biological Chemistry, 278, 23085–23093.

    Article  PubMed  CAS  Google Scholar 

  • Terrillon, S., & Bouvier, M. (2004). Roles of G-protein-coupled receptor dimerization. EMBO Reports, 5, 30–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. L.-A. Bruins for excellent technical assistance and Ms. E. Posthumus for secretarial assistance. This work was supported by grants from the National Institutes of Health, DK46577 (LJM), National Health and Medical Research Council of Australia (NHMRC) grant 436780 (PMS), and by the Fiterman Foundation (LJM). PMS is a NHMRC Principal Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence J. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harikumar, K.G., Morfis, M.M., Sexton, P.M. et al. Pattern of Intra-Family Hetero-Oligomerization Involving the G-Protein-Coupled Secretin Receptor. J Mol Neurosci 36, 279–285 (2008). https://doi.org/10.1007/s12031-008-9060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9060-z

Keywords

Navigation