Skip to main content
Log in

Les 10es Entretiens de nutrition, institut Pasteur de Lille L’obésité, une maladie nutritionnelle ?

La flore intestinale: un outsider imprévu

Gut microflora: an unexpected outsider

  • Dossier Thématique / Thematic File
  • Published:
Obésité

Résumé

La récente mise en évidence d’une différence probante entre la composition de la flore intestinale d’individus obèses et celle des individus minces a généré le concept d’une implication des bactéries de la flore commensale dans la gestion du métabolisme énergétique. Quel dialogue métabolique s’établit entre les bactéries intestinales et l’organisme hôte ? Peut-on attribuer un rôle « néfaste » à certaines bactéries et « bénéfique » à d’autres bactéries ? Comment l’alimentation et le comportement sont-ils capables d’influencer la composition et l’activité de la flore bactérienne ? Avec quelles conséquences sur le décours de l’obésité et du syndrome métabolique ? Ces questions sont abordées, sous un angle mécanistique basé sur des données expérimentales obtenues chez l’animal, mais sont également étayées d’études observationnelles ou d’intervention menées chez des individus obèses et/ou atteints d’un syndrome métabolique.

Abstract

The recent discovery of a significant difference between the composition of the gut microflora present in the obese individual and that present in slimmer individuals, has led to the idea that bacteria in commensal flora may be involved in energy metabolism management. What is the metabolic dialogue between intestinal bacteria and the host organism? Are some bacteria “harmful” whilst others are “beneficial”? How can diet and behaviour affect the composition and activity of bacteriological flora? What effect might this have on the development of obesity and metabolic syndrome? These questions are considered from a mechanistic point of view as well as being backed up by observational and therapeutic studies carried out on subjects presenting obesity and/or metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31: 107–133

    Article  PubMed  CAS  Google Scholar 

  2. Xu J, Mahowald MA, Ley RE, Lozupone CA, et al. (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5: e156

    Article  PubMed  Google Scholar 

  3. Nicholson JK, Holmes E, Wilson ID (2005) Gut micro-organisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3: 431–438

    Article  PubMed  CAS  Google Scholar 

  4. Marteau P, Pochart P, Dore J, et al. (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67: 4939–4942

    Article  PubMed  CAS  Google Scholar 

  5. Wong JM, de Souza R, Kendall CW, et al. (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40: 235–243

    Article  PubMed  CAS  Google Scholar 

  6. Delzenne NM, Cani PD (2008) Gut microflora is a key player in host energy homeostasis. Med Sci (Paris) 24: 505–510

    Google Scholar 

  7. Backhed F, Ding H, Wang T, et al. (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101: 15718–15723

    Article  PubMed  Google Scholar 

  8. Backhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104: 979–984

    Article  PubMed  CAS  Google Scholar 

  9. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022–1023

    Article  PubMed  CAS  Google Scholar 

  10. Kalliomaki M, Collado MC, Salminen S, Isolauri E (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87: 534–538

    PubMed  CAS  Google Scholar 

  11. Turnbaugh PJ, Ley RE, Mahowald MA (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027–1031

    Article  PubMed  Google Scholar 

  12. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444: 860–867

    Article  PubMed  CAS  Google Scholar 

  13. Neal MD, Leaphart C, Levy R, et al. (2006) Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol 176: 3070–3079

    PubMed  CAS  Google Scholar 

  14. Vreugdenhil AC, Rousseau CH, Hartung T (2003) Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. J Immunol 170: 1399–1405

    PubMed  CAS  Google Scholar 

  15. Wright SD, Ramos RA, Tobias PS (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431–1433

    Article  PubMed  CAS  Google Scholar 

  16. Wolowczuk I, Verwaerde C, Viltart O, et al. (2008) Feeding our immune system: impact on metabolism. Clin Dev Immunol 2008: 639803

  17. Brun P, Castagliuolo I, Leo VD, et al. (2007) Increased intestinal permeability in obese mice: new evidence in the pathogenesis of non-alcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 292: G518–G525

    Article  PubMed  CAS  Google Scholar 

  18. Cani PD, Amar J, Iglesias MA, et al. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761–1772

    Article  PubMed  CAS  Google Scholar 

  19. Amar J, Burcelin R, Ruidavets JB, et al. (2008) Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 87: 1219–1223

    PubMed  CAS  Google Scholar 

  20. Creely SJ, McTernan PG, Kusminski CM, et al. (2007) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 292: E740–E747

    Article  PubMed  CAS  Google Scholar 

  21. Cani PD, Bibiloni R, Knauf C, et al. (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6): 1470–1481 (Epub 2008 Feb 27)

    Article  PubMed  CAS  Google Scholar 

  22. Membrez M, Blancher F, Jaquet M, et al. (2008) Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 22(7): 2416–2426 (Epub 2008 Mar 7)

    Article  PubMed  CAS  Google Scholar 

  23. Cani PD, Neyrinck AM, Fava F, et al. (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50: 2374–2383

    Article  PubMed  CAS  Google Scholar 

  24. Cani PD, Daubioul CA, Reusens B, et al. (2005) Involvement of endogenous glucagon-like peptide-1(7–36) amide on glycaemia-lowering effect of oligofructose in streptozotocin-treated rats. J Endocrinol 185: 457–465

    Article  PubMed  CAS  Google Scholar 

  25. Cani PD, Neyrinck AM, Maton N, Delzenne NM (2005) Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide-1. Obes Res 13: 1000–1007

    Article  PubMed  CAS  Google Scholar 

  26. Cani PD, Joly E, Horsmans Y, Delzenne NM (2006) Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 60: 567–572

    Article  PubMed  CAS  Google Scholar 

  27. Cani PD, Knauf C, Iglesias MA, et al. (2006) Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide-1 receptor. Diabetes 55: 1484–1490

    Article  PubMed  CAS  Google Scholar 

  28. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125: 1401–1412

    PubMed  CAS  Google Scholar 

  29. Cani PD, Dewever C, Delzenne NM (2004) Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 92: 521–526

    Article  PubMed  CAS  Google Scholar 

  30. Cani PD, Hoste S, Guiot Y, Delzenne NM (2007) Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br J Nutr 98: 32–37

    Article  PubMed  CAS  Google Scholar 

  31. Delzenne NM, Cani PD, Daubioul C, Neyrinck AM (2005) Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr 93(Suppl 1): S157–S161

    Article  PubMed  CAS  Google Scholar 

  32. Delzenne NM, Cani PD, Neyrinck AM (2007) Modulation of glucagon-like peptide-1 and energy metabolism by inulin and oligofructose: experimental data. J Nutr 137: 2547S–2551S

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. -M. Delzenne.

Additional information

Ce texte correspond à une conférence faite par l’auteur, il n’a donc pas été soumis à l’appréciation du comité de rédaction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delzenne, N.M., Cani, P.D. Les 10es Entretiens de nutrition, institut Pasteur de Lille L’obésité, une maladie nutritionnelle ?. Obes 3, 141–145 (2008). https://doi.org/10.1007/s11690-008-0136-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-008-0136-2

Mots clés

Keywords

Navigation