Skip to main content
Log in

Carbon Nanotube Thermal Pastes for Improving Thermal Contacts

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The use of 0.6 vol.% single-walled carbon nanotubes in a poly(ethylene glycol)-based dispersion gave a thermal paste that was as effective as solder for improving thermal contacts. A thermal contact conductance of 20 × 104 W m−2 K−1 was attained. An excessive amount of nanotubes (e.g. 1.8 vol.%) degraded the performance, because of conformability loss. The nanotubes were more effective than hexagonal boron nitride particles but were less effective than carbon black, which gave a thermal contact conductance of 30 × 104 W m−2 K−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S. Physica B: Condensed Matter 2002;323(1–4):1

    Article  CAS  Google Scholar 

  2. Xu J.M.J., Proc. SPIE Int. Soc. Optical Eng. 2002;4823:88–95

    Google Scholar 

  3. Lin M.C.C., Lai M.S., Lai H.J., Yang M.H., Wei B.Y., Li A.K., Mater. Res. Soc. Symp. Proc. 2002;728:133–138

    CAS  Google Scholar 

  4. Dai L. Light-emitting polymers and carbon nanotube electron emitters for optoelectronic displays. Smart Mater & Struct 2002;11(5):645

    Article  CAS  Google Scholar 

  5. Tsukagoshi K., Yoneya N., Uryu S., Aoyagi Y., Kanda A., Ootuka Y., Alphenaar B.W. Carbon nanotube devices for nanoelectronics. Physica B: Condensed Matter 2002;323(1–4):107–114

    Article  CAS  Google Scholar 

  6. F. Kreupl, A. Graham, and W. Honlein, Solid State Technol. 45(4), S9, S10, S12, S14, S16 (2002)

  7. R. Martel, H.S.P. Wong, K. Chan, and P. Avouris (Technical Digest – International Electron Devices Meeting, IEEE cat. n 01CH37224, 159, 2001)

  8. S. Chopra, A. Pham, J. Gaillard, and A.M. Rao (IEEE MTT-S International Microwave Symposium Digest, 2, IEEE cat n 02CH37278, 639, 2002)

  9. Lau K.T., Hui D. The revolutionary creation of new advanced materials – carbon nanotube composites. Composites Part B: Engineering 2002;33(4):263–277

    Article  Google Scholar 

  10. F.K. Ko, S. Khan, A. Ali, Y. Gogotsi, N. Naguib, G. Yang, C. Li, H. Shimoda, O. Zhou, M.J. Bronikowski, R.E. Smalley, and P.A. Willis (Collection of Technical Papers – AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,2002), vol. 3, pp.␣1779–1787

  11. Chen W.X., Tu J.P., Wang L.Y., Gan H.Y., Xu Z.D., Zhang X.B. Tribological application of carbon nanotubes in metal-based composite coating and composites. Carbon 2003;41(2):215–222

    Article  CAS  Google Scholar 

  12. Koratkar N., Wei B., Ajayan P.M. Carbon nanotube films for damping applications. Adv Mater 2002;14(13–14):997–1000

    CAS  Google Scholar 

  13. J.D.W. Madden, P.G.A. Madden, and I.W. Hunter (Proceedings of SPIE – The International Society for Optical Engineering, 2002), vol. 4695, pp. 176–190

  14. M. Esashi (IEEE Symposium on VLSI Circuits, Digest of Technical Papers, IEEE cat. n 01CH37303, 2002), pp. 6–11

  15. Y.K. Kwon and P. Kim, High Thermal Conductivity Materials, ed. S.L. Shinde and J.S. Goela (2006), pp. 227–265

  16. Che J., Cagin T., Goddard W. Thermal conductivity of carbon nanotubes. Nanotechnology 2000; 11(2): 65–69

    Article  CAS  Google Scholar 

  17. Zhang W., Zhu Z., Wang F., Wang T., Sun L., Wang Z. Chirality dependence of the thermal conductivity of carbon nanotubes. Nanotechnology 2004; 15(8): 936–939

    Article  CAS  Google Scholar 

  18. Shenogin S., Bodapati A., Xue L., Ozisik R., Keblinski P. Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl. Phys. Lett. 2004; 85(12): 2229–2231

    Article  CAS  Google Scholar 

  19. Liu C.H., Fan S.S. Effects of chemical modifications on the thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 2005; 86(12): 123106/1–123106/3

    CAS  Google Scholar 

  20. Shenogin S., Xue L., Ozisik R., Keblinski P., Cahill D.G. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. Journal of Applied Physics 2004; 95(12): 8136–8144

    Article  CAS  Google Scholar 

  21. Duong H., Papavassiliou D., Lee L.L., Mullen K.J. Random walks in nanotube composites: Improved algorithms and the role of thermal boundary resistance. Appl. Phys. Lett. 2005; 87(1): 013101/1–013101/3

    Article  CAS  Google Scholar 

  22. Nan C., Liu G., Lin Y., Li M. Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 2004; 85(16): 3549–3551

    Article  CAS  Google Scholar 

  23. Huang Q., Gao L., Liu Y., Sun J. Sintering and thermal properties of multiwalled carbon nanotube-BaTiO3 composites. J. Mater. Chem. 2005; 15(20): 1995–2001

    Article  CAS  Google Scholar 

  24. T. Lee, K. Chiou, F. Tseng, and C. Huang (Proceedings of the55th Electronic Components and Tech. Conf., IEEE, Piscataway, NJ, 2005), vol. 1, pp. 55–59

  25. X. Hu, L. Jiang, and K.E. Goodson (Proceedings of the 9th Intersociety Conf. on Thermal and Thermomechanical Phenomena in Elec. Sys., IEEE, Piscataway, NJ, 2004), vol.␣1, pp. 63–69

  26. J.L. Sample, K.J. Rebello, H. Saffarian, and R. Osiander (9th Intersociety Conf. on Thermal and Thermomechanical Phenomena in Elec. Sys., IEEE, Piscataway, NJ, 2004), vol.␣1, pp. 297–301

  27. A. Desai, S. Mahajan, G. Subbarayan, W. Jones, J. Geer, and B. Sammakia (9th Intersociety Conf. on Thermal and Thermomechanical Phenomena in Elec. Sys., IEEE, Piscataway, NJ, 2004), vol. 1, pp. 403–409

  28. Chuang H.F., Cooper S.M., Meyyappan M, Cruden B.A. Improvement of thermal contact resistance by carbon nanotubes and nanofibers. Journal of Nanoscience and Nanotechnology 2004; 4(8): 964–967

    Article  CAS  Google Scholar 

  29. Ngo Q., Cruden B.A., Cassell A.M., Sims G., Meyyappan M., Li J., Yang C.Y. Thermal interface properties of Cu-filled vertically aligned carbon nanofiber arrays. Nano Letters 2004; 4(13): 2403–2407

    Article  CAS  Google Scholar 

  30. Y. Wu, C.H. Liu, H. Huang, and S.S. Fan, Appl. Phys. Lett. 87, 213108-1 (2005)

    Google Scholar 

  31. D.D.L. Chung and C. Zweben, Comprehensive Composite Materials, vol. 6 (Pergamon, 2000), pp. 701–725

  32. Chung D.D.L. Materials for thermal conduction. Applied Thermal Engineering 2001;21(ER16):1593–1605

    Article  CAS  Google Scholar 

  33. Wolff E.G., Schneider D.A. Prediction of thermal contact resistance between polished surfaces. Int J Heat & Mass Transfer 1998;41(22):3469–3482

    Article  CAS  Google Scholar 

  34. T. Ouellette and M. de Sorgo (Proceedings of the Power Electronics Design Conf., Power Sources Users Conf., Cerritos, CA, 1985), pp. 134–138

  35. M.R. Vogel (Proceedings of the Int. Intersociety Electronic Packaging Conf., Adv. in Electronic Packaging, American Society of Mechanical Engineers, New York, NY, 1995), vol.␣10-2, p. 989

  36. Xu Y., Luo X., Chung D.D.L. Lithium doped polyethylene-glycol-based thermal interface pastes for high thermal contact conductance. J Electron Packaging 2002;124(3):188–191

    Article  CAS  Google Scholar 

  37. Leong C.K., Chung D.D.L. Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance. Carbon 2003; 41(13): 2459–2469

    Article  CAS  Google Scholar 

  38. Leong C.K., Chung D.D.L. Carbon black dispersions and carbon-silver combinations as thermal pastes that surpass commercial silver and ceramic pastes in providing high thermal contact conductance. Carbon 2004;42(11): 2323–2327

    Article  CAS  Google Scholar 

  39. T.A. Howe, C.K. Leong, and D.D.L. Chung, J. Electron. Mater. 35(8), 1628 (2006)

    Article  CAS  Google Scholar 

  40. Leong C.K., Aoyagi Y., Chung D.D.L. Carbon Black Pastes as Coatings for Improving Thermal Gap-Filling Materials. Carbon 2006;44(3): 435–440

    Article  CAS  Google Scholar 

  41. Kim J.M., Choi W.B., Lee N.S., Jung J.E. Field emission from carbon nanotubes for displays. Diamond & Related Materials 2000;9(3):1184–1189

    Article  CAS  Google Scholar 

  42. Jung J.E., Jin Y.W., Choi J.H., Park Y.J., Ko T.Y., Chung D.S., Kim J.W., Jang J.E., Cha S.N., Yi W.K., Cho S.H., Yoon M.J., Lee C.G., You J.H., Lee N.S., et al. Fabrication of triode-type field emission displays with high-density carbon-nanotube emitter arrays. Physica B: Condensed Matter 2002;323(1–4):17–77

    Google Scholar 

  43. J.H. You et al. (SID Conference Record of the International Display Research Conference, 2001), pp. 1221–1224

  44. J.W. Nam et al. (Proceedings of the IEEE International Vacuum Microelectronics Conference, IVMC, 2001), pp. 57–58

  45. Vivien L., Riehl D., Hache F., Anglaret E. Optical limiting properties of carbon nanotubes. Physica B: Condensed Matter 2002;323(1–4):233–234

    Article  CAS  Google Scholar 

  46. Spindler-Ranta S., Bakis C.E. Carbon nanotube reinforcement of a filament winding resin. Int SAMPE Symp Exhib (Proc) 2002;47(II):1775–1787

    CAS  Google Scholar 

  47. Thostenson E.T., Chou T.W. Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J Physics D-Applied Physics 2002;35(16):L77–L80

    Article  CAS  Google Scholar 

  48. Dufresne A., Paillet M., Putaux J.L., Canet R., Carmona F., Delhaes P. Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites. J Mater Sci 2002;37(18):3915–3923

    Article  CAS  Google Scholar 

  49. Mitchell C.A., Bahr J.L., Arepalli S., Tour J.M., Krishnamoorti R. Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 2002;35(23):8825–8830

    Article  CAS  Google Scholar 

  50. O’Flaherty S.M., Murphy R., Hold S.V., Cadek M., Coleman J.N., Blau W.J. Materials investigation and optical limiting properties of carbon nanotube and nanoparticle dispersion. J Physical Chemistry B 2003;107(4):958–964

    Article  CAS  Google Scholar 

  51. Safadi B., Andrews R., Grulke E.A. Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J Appl Polym Sci 2002;84(14):2660–2669

    Article  CAS  Google Scholar 

  52. Park C., Ounaies Z., Watson K.A., Pawlowski K., Lowther S.E., Connell J.W., Siochi E.J., Harrison J.S., St Clair T.L. Polymer-single wall carbon nanotube composites for potential spacecraft applications. Mater Res Soc Symp – Proc 2002;706:91–96

    CAS  Google Scholar 

  53. Lee S.B., Teo K.B.K, Chhowalla M., Hasko D.G., Amaratunga G.A.J., Milne W.I., Ahmed H. Study of multi-walled carbon nanotube structures fabricated by PMMA suspended dispersion. Microelectronic Engineering 2002;61–62:475–483

    Article  Google Scholar 

  54. Nativ-Roth E., Levi-Kalisman Y., Regev O., Yerushalmi-Rozen R. On the route to compatibilization of carbon nanotubes. J Polym Eng 2002;22(5):353–368

    CAS  Google Scholar 

  55. S.W. Wilson, A.W. Norris, E.B. Scott, and M.R. Costello (Proceedings of the Technical Program, Reed Exhibition Companies, Norwalk, CT, 1996), vol. 2, pp. 788–796

  56. A.L. Peterson (Proceedings of the 40th Electronic Components and Tech. Conf., IEEE, Piscataway, NJ, 1990), vol. 1, pp. 613–619

  57. Lu X., Xu G., Hofstra P.G., Bajcar R.C. Moisture-absorption, dielectric relaxation, and thermal conductivity studies of polymer composites. J Polym Sci, Part B 1998;36(13):2259–2265

    Article  CAS  Google Scholar 

  58. T. Sasaski, K. Hisano, T. Sakamoto, S. Monma, Y. Fijmori, H. Iwasaki, and M. Ishizuka (Japan IEMT Symp. Proc., IEEE/CPMT Int. Electronic Manufacturing Technology (IEMT) Symp, IEEE, Piscataway, NJ, 1995), pp. 236–239

  59. Xu Y., Luo X., Chung D.D.L. Sodium silicate based thermal pastes for high thermal contact conductance. J Electronic Packaging 2000;122(2):128–131

    Article  CAS  Google Scholar 

  60. Stanton R.M. Rheological aspects of thick film technology; an investigation of the flow properties of ethyl cellulose vehicle system. Int J Hybrid Microelectronics 1983;6(1):419–432

    CAS  Google Scholar 

  61. Kumar U. A development methodology for copper end termination paste – Part 1: Origin of green defects. Active & Passive Electronic Components 2002;25(2):169–179

    Article  Google Scholar 

  62. Khare P.K., Jain S.K., Paliwal S.K. Ageing effect on ethyl cellulose films. Polym Int 1997;42(2):138–142

    Article  CAS  Google Scholar 

  63. Khare P.K., Pandey R.K., Chourasia R.R., Jain P.L. Transient and steady-state conduction in ethyl cellulose (EC)-poly(methyl methacrylate) (PMMA) blends. Polym Int 2000;49(7):719–727

    Article  CAS  Google Scholar 

  64. Parker W.J., Jenkins R.J., Butler C.P., Abbott G.L. Flash method of determining thermal diffusivity, heat capacity and thermal conductivity. J Appl Physics 1961;32(9):1679–1683

    Article  CAS  Google Scholar 

  65. Inoue K., Ohmura E. Measurement by laser flash method of thermal diffusivity of two-layer composites. Yosetsu Gakkai Ronbunshu/Quarterly. J Japan Welding Soc 1988;6(3):130–134

    Google Scholar 

  66. Leong C.K., Aoyagi Y., Chung D.D.L. Carbon-black thixotropic thermal pastes for improving thermal contacts. J. Electron. Mater. 2005; 34(10): 1336–1341

    Article  CAS  Google Scholar 

  67. Grivas D., Frear D., Quan L., Morris J.W. Jr The formation of Cu3Sn Intermetallic on the reaction of Cu with 95Pb-5Sn solder. J Electron Mater 1986;15(6):355–359

    Article  CAS  Google Scholar 

  68. Tu K.N. Cu/Sn interfacial reactions: thin-film case versus bulk case. Mater Chem Phys 1996;46:217–223

    Article  CAS  Google Scholar 

  69. Tsutsumi K., Kohara M., Shibata H., Nakata H. Study of the tin-copper metallurgical reaction at solder bumps. Int J Hybrid Microelectronics 1984;7(4):38–43

    CAS  Google Scholar 

  70. H.K. Kim, Y. Wang, A. Maheshwari, and K.N. Tu, Wetting Behaviors of Sn-Based Solders on Cu and Pd Surfaces. Mater. Res. Soc. Symp. Proc., vol. 390, ed. Robert C. Sundahl, King-Ning Tu, Kenneth A. Jackson, and Peter Borgensen (Materials Research Society, 1995), pp. 183–188

  71. Frysz C., Shui X., Chung D.D.L. Carbon filaments and carbon black as a conductive additive to the manganese dioxide cathode of a lithium electrolytic cell. J. Power Sources 1996;58(1):41–54

    Article  CAS  Google Scholar 

  72. Lu W., Chung D.D.L. A comparative study of carbons for use as an electrically conducting additive in Manganese Dioxide cathode of an electrochemical cell. Carbon 2002;40(ER3):447–449

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.D.L. Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Leong, CK. & Chung, D. Carbon Nanotube Thermal Pastes for Improving Thermal Contacts. J. Electron. Mater. 36, 1181–1187 (2007). https://doi.org/10.1007/s11664-007-0188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-007-0188-3

Keywords

Navigation