Skip to main content
Log in

The science behind the quest to determine the age of bruises—a review of the English language literature

  • Review
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Bruises are common injuries that can have medicolegal significance. There are those that maintain it is not possible to estimate the age of bruises. However, appreciation of the biological processes related to the resolution of a bruise suggests that these may provide information regarding the age of a bruise. Potential methods for determining the age of bruises—visual observation, colorimetry, spectrophotometry and histology—are reviewed. The observation of yellow (not orange or brown) indicates a bruise is not recent, but the abilities of visual observation are limited by the physiology of the human eye. Analysis of spectrophotometric data may provide more useful and objective information. Histological examination may be appropriate only in the postmortem situation. The lack of published information limits this as a tool for estimating the age of bruises. It is not known how the wide range of factors that can influence bruise formation and resolution could affect estimation of bruise age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robinson S. The examination of the adult victim of assault. In: Mason JK, Purdue BN, editors. The pathology of trauma. London: Arnold; 2000. p. 144–8.

    Google Scholar 

  2. Spilsbury B. The medico-legal significance of bruises. Medico-Leg Ciminal Rev 1937;7:215–27.

    Google Scholar 

  3. Capper C. The language of forensic medicine: the meaning of some terms employed. Med Sci Law 2001;451:256–9.

    Google Scholar 

  4. Vanezis P. Intrepreting bruises at necropsy. J Clin Pathol 2001;54:348–55.

    PubMed  CAS  Google Scholar 

  5. Giles TE, Williams AR. The postmortem incidence of senile ecchymoses. Am J Forensic Med Pathol 1994;15:208–10.

    PubMed  CAS  Google Scholar 

  6. Camps F. Interpretation of wounds. Br Med J 1952;2:770–2.

    PubMed  CAS  Google Scholar 

  7. Cluroe AD. Superficial soft-tissue injury. Am J Forensic Med Pathol 1995;16:142–6.

    PubMed  CAS  Google Scholar 

  8. Davis GJ. Patterns of injury. Blunt and sharp. Clin Lab Med 1998;18:339–50.

    PubMed  CAS  Google Scholar 

  9. Hiss J, Kahana T. Medicolegal investigation of death in custody: a postmortem procedure for detection of blunt force injuries. Am J Forensic Med Pathol 1996;17:312–4.

    PubMed  CAS  Google Scholar 

  10. Teresinski G, Madro R. Evidential value of injuries useful for reconstruction of the pedestrian-vehicle location at the moment of collision. Forensic Sci Int 2002;128:127–35.

    PubMed  Google Scholar 

  11. Lee KA, Opeskin K. Death due to superficial soft tissue injuries. Am J Forensic Med Pathol 1992;13:179–85.

    PubMed  CAS  Google Scholar 

  12. Hiss J, Kahana T, Kugel C. Beaten to death: why do they die? J Trauma 1996;40:27–30.

    PubMed  CAS  Google Scholar 

  13. Edwards EA, Duntley SQ. The pigments and color of living human skin. Am J Anat 1939;65:1–33.

    Google Scholar 

  14. Hardy JD, Hammel HT, Murgatroyd D. Spectral transmittance and reflectance of excised human skin. J Appl Physiol 1956;9:257–64.

    PubMed  CAS  Google Scholar 

  15. Bohnert M, Baumgartner R, Pollak S. Spectrophotometric evaluation of the color of intra- and subcutaneous bruises. Int J Legal Med 2000;113:343–8.

    PubMed  CAS  Google Scholar 

  16. Brown GG. Pigments and minerals: Part I — hematogenous pigments. J Histotechnol 1988;11:109–10.

    CAS  Google Scholar 

  17. Makarem A. Hemoglobins, myoglobins and haptoglobins. In: Henry RJ, Cannon DC, Winkelman JW, editors. Clinical chemistry principles and techniques. 1st ed. Maryland: Harper and Row; 1974. p. 1111–214.

    Google Scholar 

  18. Kienle A, Lilge L, Vitkin A, Patterson MS, Wilson BC, Hibst R, Steiner R. Why do veins appear blue? A new look at an old question. Appl Optics 1996;35:1151–60.

    Google Scholar 

  19. Stamatas GN, Zmudzka BZ, Kollias N, Beer JZ. Non-invasive measurement of skin pigmentation in situ. Pigm Cell Res 2004;17:618–26.

    Google Scholar 

  20. Kollias N. The physical basis of skin color and its evaluation. Clin Dermatol 1995;13:361–7.

    PubMed  CAS  Google Scholar 

  21. Findlay GH. Blue skin. Br J Dermatol 1970;83:127–34.

    PubMed  CAS  Google Scholar 

  22. Takamiya M, Saigusa K, Kumagai R, Nakayashiki N, Yasuhiro A. Studies on mRNA expression of tissue-type plasminogen activator in bruises for wound age estimation. Int J Legal Med 2005;119:16–21.

    PubMed  Google Scholar 

  23. Garner WL, Rodrigues JL, Miller CG, Till GO, Rees RS, Smith DJ, Remick DG. Acute skin injury releases neutrophil chemoattractants. Surgery 1995;116:42–8.

    Google Scholar 

  24. Harris BH, Gelfand JA The immune response to trauma. Semin Pediatr Surg 1995;4:77–82.

    PubMed  CAS  Google Scholar 

  25. Willis D, Moore AR, Frederick R, Willoughby DA. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat Med 1996;2:87–93.

    PubMed  CAS  Google Scholar 

  26. Gemsa D, Woo CH, Fudenberg HH, Schmid R. Erythrocyte catabolism by macrophages in vitro. The effect of hydrocortisone on erythrophagocytosis and on the induction of heme oxygenase. J Clin Invest 1973;52:812–22.

    PubMed  CAS  Google Scholar 

  27. Otterbein LE, Choi AMK. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol 2000;279:L1029-L37.

    PubMed  CAS  Google Scholar 

  28. Pimstone NR, Tenhunen R, Seitz PT, Marver HS, Schmid R. The enzymatic degradation of hemoglobin to bile pigments by macrophages. J Exp Med 1971;133:1264–81.

    PubMed  CAS  Google Scholar 

  29. Tenhunen R. The enzymatic degradation of heme. Semin Hematol 1972;9:19–29.

    PubMed  CAS  Google Scholar 

  30. Fischbach FA, Gregory DW, Harrison PM, Hoy TG, Williams JM. On the structure of hemosiderin and its relationship to ferritin. J Ultrastruct Res 1971;37:495–503.

    PubMed  CAS  Google Scholar 

  31. Ritcher GW. The iron-loaded cell—The cytopathology of iron storage. A review. Am J Pathol 1978;91:362–404.

    Google Scholar 

  32. Muir R, Niven JSF. The local formation of blood pigments. J Pathol 1935;41:183–97.

    CAS  Google Scholar 

  33. Laiho K Time dependence of hemoglobin degradation. In: Oehmichen M, Kirchner H, editors. The wound healing process—forensic pathological aspects. Lübeck: Schmidt-Römhild; 1995.

    Google Scholar 

  34. Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 2006;86:583–650.

    PubMed  CAS  Google Scholar 

  35. Laiho K, Tenhunen R. Hemoglobin-degrading enzymes in experimental subcutaneous hematomas. Z Rechtsmed 1984;93:193–8.

    PubMed  CAS  Google Scholar 

  36. Nakajima T, Hayakawa M, Yajima D, Motani-Saitoh H, Sato Y, Kiuchi M, Ichinose M, Iwase H. Time-course changes in the expression of heme oxygenase-1 in human subcutaneous hemorrhage. Forensic Sci Int 2006;158:157–63.

    PubMed  CAS  Google Scholar 

  37. Maines MD, Cohn J. Bile pigment formation by skin heme oxygenase: studies on the response of the enzyme to heme compounds and issue injury. J Exp Med 1977;145:1054–9.

    PubMed  CAS  Google Scholar 

  38. Green MA. Post-mortem examination of injuries best practice. CPD J Cell Pathol 2001;3:139–42.

    Google Scholar 

  39. Randeberg LL, Winnem AM, Langlois NEI, Larsen ELP, Haaverstad R, Skallerud B, Haugen OA, Svaasand LO. Skin changes following minor trauma. Lasers Surg Med 2007;39:403–13.

    PubMed  Google Scholar 

  40. Randeberg LL, Winnem AM, Larsen ELP, Haaverstad R, Haugen OA, Svaasand LO. In vivo hyperspectral imaging of traumatic skin injuries in a porcine model. Proc SPIE 2007;6424:642408.

    Google Scholar 

  41. Trujillo O, Vanezis P, Cermignani M. Photometric assessment of skin color and lightness using a tristimulus colorimeter: reliability of inter and intra-investigator observations in healthy adult volunteers. Forensic Sci Int 1996;81:1–10.

    PubMed  CAS  Google Scholar 

  42. Langlois NEI, Gresham GA. The ageing of bruises: a review and study of the color changes with time. Forensic Sci Int 1991;50:227–38.

    PubMed  CAS  Google Scholar 

  43. Gegenfurtner KR. Visual perception: reflections on color constancy. Nature 1999;402:855–6.

    PubMed  CAS  Google Scholar 

  44. Lillo J, Vitini I, Caballero A, Moreira H. Towards a model to predict macular dichromats’ naming errors: effects of CIE saturation and dichromatism type. Span J Psychol 2000;4:26–36.

    Google Scholar 

  45. Randeberg LL, Winnem A, Blindheim S, Haugen OA, Svaasand LO. Optical classification of bruises. Proc SPIE 2004;5312:54–64.

    Google Scholar 

  46. Mann B, Motterlini R. CO and NO in medicine. Chem Commun 2007;4197–4208. doi:10.1039/b704873d.

  47. Hamdy MK, Deatherage FE, Shinowara G. Bruised tissue I. Biochemical changes resulting from blunt injury. Proc R Soc Med 1957;95:255–8.

    CAS  Google Scholar 

  48. Knudsen A, Brodersen R. Skin color and bilirubin in neonates. Arch Dis Child 1989;64:605–9.

    PubMed  CAS  Google Scholar 

  49. Smith S, Fiddes FS. Forensic medicine. London: Churchill; 1955. p. 110–1.

    Google Scholar 

  50. Camps FE, Cameron JM. Practical forensic medicine. Second ed. London: Hutchinson; 1971. p. 167–9.

    Google Scholar 

  51. Polson CJ, Gee DJ. Essentials of forensic medicine. Oxford: Pergamon Press; 1973. p. 101.

    Google Scholar 

  52. Rentoul E, Smith H, eds. Glaister’s medical jurisprudence and toxicology. 13th ed. Edinburgh: Livingstone; 1973. p. 242–6.

    Google Scholar 

  53. Camps FE. Gradwohl’s Legal Medicine. 2nd ed. Bristol: John Wright; 1976. p. 265.

    Google Scholar 

  54. Wilson EF. Estimation of the age of cutaneous contusions in child abuse. Pediatrics 1977;60:750–2.

    PubMed  CAS  Google Scholar 

  55. Farley RH, Reece RM. Recognizing when a child’s injury or illness is caused by abuse. Type. City: Institution; 1996 Date. Report No.: Report Number. U.S. Department of Justice, Office of Juvenile Justice and Delinquency prevention. National Institute of Justice NCJ 160938. http://www.ncjrs.gov/App.Publications/abstract.aspx?ID=160938.

  56. Maguire S, Mann MK, Sibert J, Kemp A. Can you age bruises accurately in children? A systematic review. Arch Dis Child 2005;90:187–9.

    PubMed  CAS  Google Scholar 

  57. Stephenson T, Bialas Y. Estimation of the age of bruising. Arch Dis Child 1996;74:53–5.

    PubMed  CAS  Google Scholar 

  58. Mosqueda L, Burnight K, Liao S. The life cycle of bruises in older adults. J Am Geriatr Soc 2005;53:1339–43.

    PubMed  Google Scholar 

  59. Larson EA, Evans GT, Watson C. A study of the serum biliverdin concentration in various types of jaundice. J Lab Clin Med 1947;32:481–8.

    CAS  PubMed  Google Scholar 

  60. Lemberg R, Wyndham RA. Reduction of biliverdin to bilirubin in tissues. Biochemical Journal 1936;30:1147–70.

    PubMed  CAS  Google Scholar 

  61. Maines MD, Cohn J. Bile pigment formation by skin heme oxygenase. Studies on the response of the enzyme to heme compounds and tissue injury. J Exp Med 1977;145:1054–9.

    PubMed  CAS  Google Scholar 

  62. Frydman RB, Bari S, Tomaro ML, Frydman B. The enzymatic and chemical reduction of extended bilirubins. Biochem Biophy Res Co 1990;171:465–73.

    CAS  Google Scholar 

  63. Hamdy MK, May KN, Powers JJ. Some physical and physiological factors affecting poultry bruises. Poultry Sci 1961;40:790–5.

    Google Scholar 

  64. Hamdy MK, May KN, Powers JJ. Some biochemical and physical changes occurring in experimentally inflicted poultry bruises. Proc R Soc Med 1961;108:185–8.

    CAS  Google Scholar 

  65. Georgieva L, Dimitrova T, Angelov N. RGB and HSV color models in color identification of digital traumas images. International conference on computer systems and technologies. Bulgaria; 2005, 12-1-6. http://ecet.ecs.ru.acad.bg/cst05/Docs/cp/sV/V.12.pdf.

  66. DiMaio VJ, DiMaio D. Forensic pathology. 2nd ed. New York: CRC Press; 2001. p. 101–2.

    Google Scholar 

  67. Henretig FM, Gribetz B, Kearney T, Lacouture P, Loveloy FH. Interpretation of color change in blood with varying degree of methemoglobinemia. J Toxicol Clin Toxicol 1988;26:293–301.

    PubMed  CAS  Google Scholar 

  68. Jaffé ER. Methemoglobin pathophysiology. Prog Clin Biol Res 1981;51:133–51.

    PubMed  Google Scholar 

  69. Umbreit J. Methemoglobin—it’s not just blue: a concise review. Am J Hematol 2007;82:134–44.

    PubMed  CAS  Google Scholar 

  70. Weiss SJ. Neutrophil-mediated methemoglobin formation in the erythrocyte. The role of superoxide and hydrogen peroxide. J Biol Chem 1982;257:2947–53.

    PubMed  CAS  Google Scholar 

  71. Conkling PR. Brown blood: understanding methemoglobinemia. N C Med J 1986;47:109–11.

    PubMed  CAS  Google Scholar 

  72. Ross JD, Bevan-Pritchard S. Deficient activity of DPNH-dependent methemoglobin diaphorase in cord blood erythrocytes. Blood 1963;21:51–62.

    PubMed  CAS  Google Scholar 

  73. Kinnear PR, Sahraie A. New Farnsworth-Munsell 100 hue test norms of normal observers for each year of age 5–22 and for decades 30–70. Brit J Ophthalmol 2002;86:1408–11.

    CAS  Google Scholar 

  74. Hughes VK, Ellis P, Langlois NEI. The perception of yellow in bruises. J Clin Forensic Med 2004;11:257–9.

    PubMed  CAS  Google Scholar 

  75. Piérard GE. EEMCO guidance for assessment of skin color. J Eur Acad Dermatol 1998;10:1–11.

    Google Scholar 

  76. Munang LA, Leonard PA, Mok JYQ. Lack of agreement on color description between clinicians examining childhood bruising. J Clin Forensic Med 2002;9:171–4.

    PubMed  CAS  Google Scholar 

  77. Brunsting LA, Sheard C. The color of the skin as analyzed by spectrophotometric methods. III The rôle of superficial blood. J Clin Invest 1929;7:593–613.

    PubMed  CAS  Google Scholar 

  78. Takiwaki H. Measurement of skin color: practical application and theoretical considerations. J Med Invest 1998;44:121–6.

    PubMed  CAS  Google Scholar 

  79. Sheard C, Brunsting LA. The color of the skin as analysed by spectrophotometric methods. I. Apparatus and procedures. 1929:539–74.

  80. Gibson IM. Measurement of skin color in vivo. J Soc Cosmet Chem 1971;22:725–40.

    Google Scholar 

  81. Olson RL, Gaylor J, Everett MA. Skin color, melanin and erythema. Arch Dermatol 1973;108:541–4.

    PubMed  CAS  Google Scholar 

  82. Alaful S, Heinrich U, Stahl W, Tronnier H, Wiseman S. Dietary carotenoids contribute to normal human skin color and UV photosensitivity. J Nutr 2002;132:399–403.

    Google Scholar 

  83. Rees JL. Genetics of hair and skin color. Annu Rev Genet 2003;37:67–90.

    PubMed  CAS  Google Scholar 

  84. Sharanjeet-Kaur, Kulikowski JJ, Walsh V. The detection and discrimination of categorical yellow. Ophthal Physiol Opt 1996;17:32–7.

    Article  Google Scholar 

  85. Mattsson U, Jönsson A, Jontell M, Cassuto J. Digital image analysis (DIA) of color chages in human skin exposed to standardized thermal injury and comparison with laser doppler measurement. Comput Meth Prog Bio 1996;50:31–42.

    CAS  Google Scholar 

  86. Davey RB, Sprod RT, Neild TO. Computerised color: a technique for the assessment of burn scar hypertrophy. A preliminary report. Burns 1999;25:207–13.

    PubMed  CAS  Google Scholar 

  87. Mattsson U, Cassuto J, Tarnow P, Jönsson A, Jontell M. Intravenous lidocaine infusion in the treatment of experimental human skin burns—digital color image analysis of erythema development. Burns 2000;26:710–5.

    PubMed  CAS  Google Scholar 

  88. Li-Tsang CWP, Lau JCM, Liu SKY. Validation of an objective scar pigmentation measurement by using a spectrocolorimeter. Burns 2003;29:779–84.

    PubMed  Google Scholar 

  89. Hamdy MK, Kunkle LE, Rheins MS, Deatherage FE. Bruised tissue III: some factors affecting experimental bruises. J Anim Sci 1957;16:496–501.

    Google Scholar 

  90. Gerstein AD, Phillips TJ, Rogers GS, Gilchrest BA. Wound healing and aging. Dermatol Clin 1993;11:749–57.

    PubMed  CAS  Google Scholar 

  91. Ashcroft GS, Mills SJ, Ashworth JJ. Ageing and wound healing. Biogerontology 2002;3:337–45.

    PubMed  CAS  Google Scholar 

  92. Cabinum-Foeller E, Frasier L. Bruising in children. Lancet 2005;365:1369–70.

    PubMed  Google Scholar 

  93. Schwartz AJ, Ricci LR. How accurately can bruises be aged in abused children? Literature review and synthesis. Pediatrics 1996;97:254–7.

    PubMed  CAS  Google Scholar 

  94. Kempe CH, Silverman FN, Steele BF, Droegemueller W, Silver HK. The battered-child syndrome. JAMA 1962;181:17–24.

    PubMed  CAS  Google Scholar 

  95. Mortimer PE, Freeman M. Are facial bruises in babies ever accidental? Arch Dis Child 1983;58:75–80.

    Article  PubMed  CAS  Google Scholar 

  96. Carpenter RF. The prevalence and distribution of bruising in babies. Arch Dis Child 1999;80:363–6.

    PubMed  CAS  Google Scholar 

  97. Sugar NF, Taylor JA, Feldman KW. Bruises in infants and toddlers. Those that don’t cruise rarely bruise. Arch Pediatr Adolesc Med 1999;153:399–403.

    PubMed  CAS  Google Scholar 

  98. Maguire S, Mann MK, Sibert J, Kemp A. Are there patterns of brusing in childhood which are disgnostic or suggestive of abuse? A systematic review. Arch Dis Child 2005;90:182–6.

    PubMed  CAS  Google Scholar 

  99. Wissinger B, Sharpe LT. New aspects of an old theme: the genetic basis of human color vision. Am J Hum Genet 1998;63:1257–62.

    PubMed  CAS  Google Scholar 

  100. Randeberg LL, Svaasand LO. Simulated color: a diagnostic tool for skin lesions like port-wine stain. Proc SPIE 2001;4244:1–12.

    Google Scholar 

  101. Romi N. Visual decomposition of color through motion extrapolation. Nature 1997;386:66–9.

    Google Scholar 

  102. Weatherall IL, Coombs BD. Skin color measurements in terms of CIELAB color space values. J Invest Dermatol 1992;99:468–73.

    PubMed  CAS  Google Scholar 

  103. Hunt DM, Dulai KS, Bowmaker JK, Mollon JD. The chemistry of John Dalton’s color blindness. Science 1995;267:984–8.

    PubMed  CAS  Google Scholar 

  104. Hayashi S, Ueyama H, Tanabe S, Yamade S, Kani K. Number and variations of the red and green visual pigment genes in Japanese men with normal color vision. Jpn J Ophthalmol 2001;45:60–7.

    PubMed  CAS  Google Scholar 

  105. Faubert J. Visual perception and aging. Can J Exp Psychol 2002;56:164–76.

    PubMed  Google Scholar 

  106. Yajima Y, Funayama M. Spectrophotometric and trismus analysis of the colors of subcutaneous bleeding in living persons. Forensic Sci Int 2006;156:131–7.

    PubMed  CAS  Google Scholar 

  107. Bariciak ED, Plint AC, Gaboury I, Bennett S. Dating of bruises in children: an assessment of physician accuracy. Pediatrics 2003;112:804–7.

    PubMed  Google Scholar 

  108. Yajima Y, Nata M, Funayama M. Spectrophotometric and trismus analysis of the colors of subcutaneous bleeding in living persons. Legal Med 2003;5:S342-S3.

    PubMed  Google Scholar 

  109. Wyszecki G, Stiles WS. Color science. Concepts and methods, quantitative data and formula. 2nd ed. New York: John Wiley and Sons; 1982. p. 130–69.

    Google Scholar 

  110. Westerhof W. CIE Colorimetry. In: Serup J, Jemec GBE, editors. Handbook of non-invasive methods and the skin. Boca Radon: CRC Press; 1995. p. 385–96.

    Google Scholar 

  111. Anon. Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates: ASTM international; 2006. Report No.: E313-05.

  112. Andreassi L, Casini L, Simoni S, Bartalini P, Fimiani M. Measurement of cutaneous color and assessment of skin type. Photodermatol Photoimmunol Photomed 1990;7:20–4.

    PubMed  CAS  Google Scholar 

  113. Kakumanu P, Makrogiannis S, Bourbakis N. A survey of skin-color modeling and detection methods. Pattern Recogn 2007;40:1106–22.

    Google Scholar 

  114. Feather JW, Hajizadeh-Saffar M, Leslie G, Dawson JB. A portable scanning reflectance spectrophotometer using visible wave-lengths for the rapid measurement of skin pigments. Phys Med Biol 1989;34:807–20.

    PubMed  CAS  Google Scholar 

  115. Fullerton A, Fischer T, Lahti A, Wilhelm K-P, Takiwaki H, Serup J. Guidelines for measurement of skin color and erythema: a report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis 1996;35:1–10.

    PubMed  CAS  Google Scholar 

  116. Klein A, Rommeiß S, Fischbacher C, Jagemann K-U, Danzer K. Estimating the age of hemaomas in living subjects based on spectrometric measurements. In: Oehmichen M, Kirchner H, editors. The wound healing process—forensic pathological aspects. Lübeck: Schmidt-Römhild; 1995.

    Google Scholar 

  117. Carson DO. The reflectance spectrophotometric analyses of the age of bruising and livor. MSc, University of Dundee; 1998.

  118. Schmidt WD, Liebold K, Fassler D, Wollina U. Contact-free spectroscopy of leg ulcers: principle, technique, and calculation of spectroscopic wound scores. J Invest Dermatol 2001;116:531–5.

    PubMed  CAS  Google Scholar 

  119. Amazon K, Soloni F, Rywlin AM. Separation of bilirubin from hemoglobin by recording derivative spectrophotometry. Am J Clin Pathol 1981;75:519–23.

    PubMed  CAS  Google Scholar 

  120. Merrick MF, Pardue HL. Evaluation of absorption and first- and second-derivative spectra for simultaneous quantification of bilirubin and hemoglobin. Clin Chem 1986;32:598–602.

    PubMed  CAS  Google Scholar 

  121. Wells CL, Wolken JJ. Microspectrophotometry of haemosiderin granules. Nature 1962;193:977–8.

    PubMed  CAS  Google Scholar 

  122. Hughes VK, Ellis P, Burt T, Langlois NEI. The practical application of reflectance spectrophotometry for the demonstration of hemoglobin and its degradation in bruises. J Clin Pathol 2004;57:355–9.

    PubMed  CAS  Google Scholar 

  123. Randeberg LL, Haugen OA, Haaverstad R, Svaasand LO. A novel approach to age determination of traumatic injuries by reflectance spectroscopy. Lasers Surg Med 2005;38:277–89.

    Google Scholar 

  124. Randeberg LL, Baarstad I, Løke T, Kaspersen P, Svaasand LO. Hyperspectral imaging of bruised skin. Proc SPIE 2006;6078:100–10.

    Google Scholar 

  125. Exline DL, Wallace C, Roux C, Lennard C, Nelson MP, Treado PJ. Forensic applications of chemical imaging: latent fingerprint detection using visible absorption and luminesce. J Forensic Sci 2003;48:1047–53.

    PubMed  CAS  Google Scholar 

  126. Payne G, Wallace C, Reedy B, Lennard C, Schuler R, Exline D. Visible and near-infrared chemical imaging methods for the analysis of selected forensic samples. Talanta 2005;67:334–44.

    CAS  PubMed  Google Scholar 

  127. Randeberg LL. 2007 Personal communication.

  128. Payne G, Langlois N, Lennard C, Roux C. Applying visible hyperspectral (chemical) imaging to estimate the age of bruisies. Med Sci Law 2007;47:225–32.

    PubMed  Google Scholar 

  129. Bachem A, Reed CI. The penetration of light through human skin. Am J Physiol 1931;97:86–91.

    Google Scholar 

  130. Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol 1981;77:13–9.

    PubMed  CAS  Google Scholar 

  131. Kolari PJ. Penetration of unfocused laser light into the skin. Arch Dermatol Res 1985;277:342–4.

    PubMed  CAS  Google Scholar 

  132. Martin KA. Direct measurement of moisture in the skin by NIR spectroscopy. J Soc Cosmet Chem 1993;44:249–61.

    Google Scholar 

  133. Attas M, Hewko M, Payette J, Posthumus T, Sowa M, Mantsch H. Visualisation of cutaneous hemoglobin oxygenation and skin hydration using near-infrared spectroscopic imaging. Skin Res Technol 2001;7:238–45.

    PubMed  CAS  Google Scholar 

  134. Sowa MG, Leonardi L, Payette JR, Fish JS, Mantsch HH. Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period. Burns 2001;27:241–9.

    PubMed  CAS  Google Scholar 

  135. West MH, Barsley RE, Hall JE, Hayne S, Cimrmancic M. The detection and documentation of trace wound patterns by use of an alternative light source. J Forensic Sci 1992;37:1480–8.

    PubMed  CAS  Google Scholar 

  136. Golden GS. Use of alternative light source illumination in bite mark photography. J Forensic Sci 1994;39:815–23.

    PubMed  CAS  Google Scholar 

  137. Vogeley E, Pierce MC, Bertocci G. Experience with wood lamp illumination and digital photography in the documentation of bruises on human skin. Arch Pediatr Adolesc Med 2002;156:265–8.

    PubMed  Google Scholar 

  138. Hughes VK, Ellis PS, Langlois NEI. Alternative light source (polilight®) illumination with digital image analysis does not assist in determining the age of bruises. Forensic Sci Int 2006;158:104–7.

    PubMed  CAS  Google Scholar 

  139. Horisberger B, Krompecher T. Forensic diaphanoscopy: how to investigate invisible subcutaneous hematomas on living subjects. Int J Legal Med 1997;110:73–8.

    PubMed  CAS  Google Scholar 

  140. Ohshima T. Forensic wound examination. Forensic Sci Int 2000;113:153–64.

    PubMed  CAS  Google Scholar 

  141. Thornton RN, Jolly RD. The objective interpretation of histopathological data: an application to the ageing of ovine bruises. Forensic Sci Int 1986;31:225–39.

    PubMed  CAS  Google Scholar 

  142. McCausland IP, Dougherty R. Histological ageing of bruises in lambs and calves. Aust Vet J 1978;54:525–7.

    PubMed  CAS  Google Scholar 

  143. Tarran S, Langlois NEI, Dziewulski P, Sztynda T. Using the inflammatory cell infiltrate to estimate the age of human burn wounds: a review and immunohistochemical study. Med Sci Law 2006;46:115–26.

    PubMed  Google Scholar 

  144. Oehmichen M, Windisch A, Meissner C. Mononuclear cells in subcutaneous haemorrhage with special consideration of myeloid precursor cells. Med Sci Law 2000;40:286–92.

    PubMed  CAS  Google Scholar 

  145. Betz P. Histological and enzyme histochemical parameters for the age estimation of human skin wounds. Int J Legal Med 1994;107:60–8.

    PubMed  CAS  Google Scholar 

  146. Oehmichen M, Walter T, Meissener C, Friedrich H-J. Time course of cortical hemorrhages after closed traumatic brain injury: statistical analysis of posttraumatic histomorphological alterations. J Neurotraum 2003;20:87–103.

    Google Scholar 

  147. Hausmann R, Kaiser A, Lang C, Bohnert M, Betz P. A quantitative immunohistochemical study on the time-dependent course of acute inflammatory cellular response to human brain injury. Int J Legal Med 1999;112:227–32.

    PubMed  CAS  Google Scholar 

  148. Sawaguchi T, Jasani B, Kobayashi M, Knight B. Postmortem analysis of apoptotic changes associated with human skin bruises. Forensic Sci Int 2000;108:187–203.

    PubMed  CAS  Google Scholar 

  149. Fatteh A. Histochemical distinction between antemortem and postmortem skin wounds. J Forensic Sci 1966;11:17–27.

    PubMed  CAS  Google Scholar 

  150. Raekallio J. Estimation of time in forensic biology and pathology. An introductory review. Am J Forensic Med Pathol 1980;1:213–8.

    PubMed  CAS  Google Scholar 

  151. Oehmichen M, Eisenmenger W, Raff G, Berghaus G. Brain macrophages in human cortical contusions as indicator of survival period. Forensic Sci Int 1986;30:281–301.

    PubMed  CAS  Google Scholar 

  152. Oehmichen M. Vitality and time course of wounds. Forensic Sci Int 2004;144:221–31.

    PubMed  CAS  Google Scholar 

  153. Bancroft JD, Cook HC. Manual of histological techniques and their diagnostic application. 1st ed. Edinburgh: Churchill Livingstone; 1984. p. 151–2.

    Google Scholar 

  154. Betz P, Eisenmenger W. Morphometrical analysis of hemosiderin deposits in relation to wound age. Int J Legal Med 1996;108:262–4.

    PubMed  CAS  Google Scholar 

  155. Anderson RM, Opeskin K. Timing of early changes in brain trauma. Am J Forensic Med Pathol 1998;19:1–9.

    Google Scholar 

  156. Løberg EM, Torvik A. Brain contusions: the time sequence of the histological changes. Med Sci Law 1989;29:109–15.

    PubMed  Google Scholar 

  157. Cérvos-Navarro J, Lafuente JV. Traumatic brain injuries: structural changes. J Neurol Sci 1991;103:S3-S14.

    PubMed  Google Scholar 

  158. Gilliland MGF, Folberg R, Hayreh SS. Age of retinal hemorrhages by iron detection. An animal model. Am J Forensic Med Pathol 2005;26:1–4.

    PubMed  CAS  Google Scholar 

  159. Sherman JM, Winnie G, Thomassen MJ, Abdul-Karim FW, Boat TF. Time course of hemosiderin production and clearance by pulmonary macrophages. Chest 1984;86:409–11.

    PubMed  CAS  Google Scholar 

  160. Betz P. Immunohistochemical parameters for the age estimation of human skin wounds. Am J Forensic Med Pathol 1995;16:203–9.

    PubMed  CAS  Google Scholar 

  161. Betz P, Tübel J, Eisenmenger W. Immunohistochemical analysis of markers for different macrophage phenotypes and their use for a forensic wound age estimation. Int J Legal Med 1995;107:197–200.

    PubMed  CAS  Google Scholar 

  162. Dreßler J, Bachmann L, Kasper M, Hauck JG, Müller E. Time dependence of the expression of ICAM-1 (CD 54) in human skin wounds. Int J Legal Med 1997;110:299–304.

    PubMed  Google Scholar 

  163. Dreßler J, Bachmann L, Koch H, Müller E. Enhanced expression of selectins in human skin wounds. Int J Legal Med 1998;112:39–44.

    Google Scholar 

  164. Dreßler J, Bachmann L, Koch R, Müller E. Estimation of wound age and VCAM-1 in human skin. Int J Legal Med 1999;112:159–62.

    PubMed  Google Scholar 

  165. Grellner W. Time-dependent immunohistochemical detection of proinflammatory cytokines (IL-1b, IL-6, TNF-a) in human skin wounds. Forensic Sci Int 2002;130:90–6.

    PubMed  CAS  Google Scholar 

  166. Fieguth A, Feldbrügge H, Gerich T, Kleemann WJ, Tröger HD. The time-dependent expression of fibronectin, MRP8, MRP14 and defensin in surgically treated human skin wounds. Forensic Sci Int 2003;131:156–61.

    PubMed  CAS  Google Scholar 

  167. Hayashi T, Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T. Forensic application of VEGF expression to skin wound age determination. Int J Legal Med 2004;118:320–5.

    PubMed  Google Scholar 

  168. Grellner W, Vieler S, Maeda B. Transforming growth factors (TGF-α and TGF-β1) in the determination of vitality and wound age: immunohistochmical study on human skin wounds. Forensic Sci Int 2005;153:174–80.

    PubMed  CAS  Google Scholar 

  169. Engelhardt E, Toksoy A, Goebeler M, Debus S, Bröcker E-B, Gillitzer R. Chemokines IL-8, GROa, MCP-1, IP-10 and Mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing. Am J Pathol 1998;153:1849–60.

    PubMed  CAS  Google Scholar 

  170. Sato Y, Ohshima T. The expression of mRNA of proinflammatory cytokines during skin wound healing in mice: a preliminary study for forensic wound estimation (II). Int J Legal Med 2000;113:140–5.

    PubMed  CAS  Google Scholar 

  171. Langlois NEI, Tarran S, Dziewulski P. A study of burns for wound ageing reveals changes in unburnt skin with implications for future research. Med Sci Law 2005;45:205–10.

    PubMed  Google Scholar 

  172. Grellner W, Dimmeler S, Madea B. Immunohistochemical detection of fibronectin in postmortem incised wounds of porcine skin. Forensic Sci Int 1998;97:109–16.

    PubMed  CAS  Google Scholar 

  173. Tarran S, Dziewulski P, Sztynda T, Langlois NEI. A study of p53 expression in thermal burns of human skin for determination of wound age. Med Sci Law 2004;44:222–6.

    PubMed  Google Scholar 

  174. Lackner H, Karpatkin S. On the “easy bruising” syndrome with normal platelet count. Ann Int Med 1975;83:190–6.

    PubMed  CAS  Google Scholar 

  175. Hymes K, Blum M, Lackner H, Karpatkin S. Easy bruising, thrombocytopenia, and elevated platelet immunoglobulin G in Graves’ disease and Hashimoto’s thyroiditis. Ann Int Med 1981;94:27–30.

    PubMed  CAS  Google Scholar 

  176. Schreiner DT. Purpura. Dermatol Clin 1989;7:481–90.

    PubMed  CAS  Google Scholar 

  177. Green C. Spontaneous bruising during treatment with isoretinoin. Br J Dermatol 1993;128:464–70.

    Google Scholar 

  178. Roy A, Leblanc C, Ghezzo H, Côté J, Cartier A, Malo J-L. Skin bruising in asthmatics: subjects treated with high doses of inhaled steroids: frequency and association with adrenal function. Eur Respir J 1996;9:226–31.

    PubMed  CAS  Google Scholar 

  179. Gerrard JM, Duta E, Nosek-Cenkowska B, Singhroy S, Cheang M, Kobrinsky NL. A role for prostacyclin in bruising symptomatology. Pediatrics 1992;90:33–6.

    PubMed  CAS  Google Scholar 

  180. Ramanan SV. A memorable patient. A very rare bleeding disorder. Br Med J 1998;317:1437.

    Google Scholar 

  181. Gribble M. Bruising and purpura. Aust Fam Physician 1979;8:392–7.

    PubMed  CAS  Google Scholar 

  182. McGowan S, Power J. Effect of ice on bruising at cardiac catheter insertion sites (brachial approach). Aust J Adv Nurs 1988;5:27–33.

    PubMed  CAS  Google Scholar 

  183. Myrer JW, Heckmann R, Francis RS. Topically applied dimethyl sulfoxide. Its effects on inflammation and healing of a contusion. Am J Sport Med 1986;14:165–9.

    CAS  Google Scholar 

  184. Lovell RRH, Scott GBD, Hudson B, Osborne JA. The effects of cortisone and adrenocorticotrophic hormone on dispersion of bruises in skin. Br J Exp Pathol 1953;34:535–41.

    PubMed  CAS  Google Scholar 

  185. Ennever JF, Costarino AT, Polin RA, Speck WT. Rapid clearance of a structural isomer of bilirubin during phototherapy. J Clin Invest 1987;79:1674–8.

    PubMed  CAS  Google Scholar 

  186. Grass F, Wyskovsky W, Zaussinger J, Kasper S. Formation of lumirubin during light therapy in adults. J Biol Sci 2004;4:357–60.

    Article  Google Scholar 

  187. Zumwalt RE, Fierro MF. Postmortem changes. In: Froede RC, editors. Handbook of forensic pathology. Illinois: College of American Pathologists; 1990. p. 77–84.

    Google Scholar 

  188. Hanzlick R. Embalming, body preparation, burial, and disinterment. An overview for forensic pathologists. Am J Forensic Med Pathol 1994;15:122–31.

    PubMed  CAS  Google Scholar 

  189. Betz P, Lignitz E, Eisenmenger W. The time-dependent appearance of black eyes. Int J Legal Med 1995;108:96–9.

    PubMed  CAS  Google Scholar 

  190. Prinsloo I, Gordon I. Post-mortem dissection artefacts of the neck. Their differentiation from ante-mortem bruises. S A Med J 1951;25:358–61.

    CAS  Google Scholar 

  191. Lawrence RD. Postmortem orbital “hematoma”, an artefact of eye globe donation. Am J Forensic Med Pathol 1987;8:90.

    PubMed  CAS  Google Scholar 

  192. Williams DJ, Cassidy MT. Post-mortem examination and the cervical spine injury. Med Sci Law 1987;1987:85–9.

    Google Scholar 

  193. Maxeiner H. The microscopical findings (early vital reactions) in bleedings of the laryngeal muscles after laryngeal injuries. In: Oehmichen M, Kirchner H, editors. The wound healing process—forensic pathological aspects. Lübeck: Schmidt-Römhild; 1995. p. 309–24.

    Google Scholar 

  194. Burke M, Olumbe AK, Opeskin K. Postmortem extravasation of blood potentially simulating antemortem bruising. Am J Forensic Med Pathol 1998;19:46–9.

    PubMed  CAS  Google Scholar 

  195. Camps FE, Hunt AC. Pressure on the neck. J Forensic Med 1959;6:116–35.

    Google Scholar 

  196. Moritz AR. The pathology of trauma. 1 ed. Boston: H Kimpton; 1942.

    Google Scholar 

  197. Robertson I, Mansfield RA. Antemortem and postmortem bruises of the skin. Their differentiation. J Forensic Med 1957;4:2–10.

    Google Scholar 

  198. Vanezis P. Bruising: concepts of ageing and interpretation. In: Rutty GN, editors. Essentials of autopsy practice. vol. 1. London: Springer-Verlag; 2001. p. 221–40.

    Google Scholar 

  199. Takeichi S, Wakasugi C, Shikata I. Fluidity of cadaveric blood after sudden death: Part I. Postmortem fibrinolysis and plasma catecholamine level after death. Am J Forensic Med Pathol 1984;5:223–7.

    Article  PubMed  CAS  Google Scholar 

  200. Takeichi S, Wakasugi C, Shikata I. Fluidity of cadaveric blood after sudden death: Part II. Mechanisma of release of plaminogen activator from blood vessels. Am J Forensic Med Pathol 1985;6:25–9.

    PubMed  CAS  Google Scholar 

  201. Takeichi S, Tokunaga I, Hayakumo K, Maeiwa M. Fluidity of cadaveric blood after sudden death: Part III. Acid-base balance and fibrinolysis. Am J Forensic Med Pathol 1986;7:35–8.

    PubMed  CAS  Google Scholar 

  202. Saukko P, Knight B. Knight’s forensic pathology. 3rd ed. Oxford: Oxford University Press; 2004. p. 39.

    Google Scholar 

  203. Kibayashi K, Hamada K, Honjyo K, Tsunenari S. Differentiation between bruises and putrefactive discolorations of the skin by immunological analysis of glycophorin A. Forensic Sci Int 1993;61:111–7.

    PubMed  CAS  Google Scholar 

  204. Tabata N, Morita M. Immunohistochemical demonstration of bleeding in decomposed bodies by using anti-glycophorin A monoclonal antibody. Forensic Sci Int 1997;87:1–8.

    PubMed  CAS  Google Scholar 

  205. Fatteh A. Distinction between antemorten and postmortem wounds: a study of elastic fibres in human skin. J Forensic Sci 1971;16:393–6.

    PubMed  CAS  Google Scholar 

  206. Ali TT. Altered collagen (fibrinoid change) at the site of post-mortem injuries. Med Sci Law 1992;32:218–24.

    PubMed  CAS  Google Scholar 

  207. Nádvorník F. The vital reaction and timing of the wound. Acta Universitatis Carolinae Medica 1985;31:475–524.

    PubMed  Google Scholar 

  208. Lasarov I. Besonderheiten der fibrinbildung in schnittwunden der haut, festgestellt durch rasterelektronmikroskopie. Int J Legal Med 1987;98:1437–596.

    Google Scholar 

  209. Raekallio J. Suicide or homicide-biochemical reconstruction of complicated cases of death. Acta Med Leg Soc 1986;36:250–9.

    CAS  Google Scholar 

  210. Hernández-Cuet C, Girela E, Sweet DJ. Advances in the diagnosis of wound vitality: a review. Am J Forensic Med Pathol 2000;21:21–31.

    Google Scholar 

  211. Psaroudakis K, Tzatzarakis MN, Tsatsakis AM, Michalodimitrakis MN. The application of histochemical methods to age evaluation of skin wounds: experimental study of rabbits. Am J Forensic Med Pathol 2001;22:341–5.

    PubMed  CAS  Google Scholar 

  212. Ali TT. The role of white blood cells in post-mortem wounds. Med Sci Law 1988;28:100–96.

    PubMed  CAS  Google Scholar 

  213. Grellner W, Madea B, Kruppenbacher JP, Dimmeler S. Interleukin-1α (IL-1α) and N-formyl-methionyl-leucyl-phenylalanine (FMLP) as potential inducers of supravital chemotaxis. Int J Legal Med 1996;109:130–3.

    PubMed  CAS  Google Scholar 

  214. Dachun W, Jiazhen Z, Localization and quantification of the non-specific esterase in injured skin for timing of wounds. Forensic Sci Int 1992;53:203–13.

    PubMed  CAS  Google Scholar 

  215. Sivaloganathan S. Ante-mortem injury or post-mortem?—Diagnosis using histamine as a marker. Med Sci Law 1982;22:119–25.

    PubMed  CAS  Google Scholar 

  216. He L, Zhu J. Distinguishing antemortem from postmortem injuries by LTB4 quantitification. Forensic Sci Int 1996;81:11–6.

    PubMed  CAS  Google Scholar 

  217. Tarran SLS, Craft GE, Valova V, Robinson PJ, Thomas G, Markham R, Langlois NEI, Vanezis P. The use of proteomics to study wound healing: a preliminary study for forensic estimation of wound age. Med Sci Law 2007;47:134–40.

    Article  PubMed  Google Scholar 

  218. Bradley WG. MR appearance of hemorrhage in the brain. Radiology 1993;189:15–26.

    PubMed  Google Scholar 

  219. Jackowski C, Thali M, Aghayev E, Yen K, Sonnenschein M, Zwygart K, Dirnhofer R, Vock P. Postmortem imaging of blood and its characteristics using MSCT and MRI. Int J Legal Med 2006;120:233–40.

    PubMed  CAS  Google Scholar 

  220. Lyons AJ. Re: Letter to the editor: regarding lack of agreement on color description in bruising. J Clin Forensic Med 2003;10:127–8.

    PubMed  Google Scholar 

  221. Dailey JC, Bowers CM. Aging of bitemarks: a literature review. J Forensic Sci 1997;1997:792–5.

    Google Scholar 

  222. Dolinak D, Matshes E. Blunt force injury. In: Dolinak D, Matshes E, Lew E, editors. Forensic Pathol. 1st ed. Amsterdam: Elsevier; 2005. p. 128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. I. Langlois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langlois, N.E.I. The science behind the quest to determine the age of bruises—a review of the English language literature. Forens Sci Med Pathol 3, 241–251 (2007). https://doi.org/10.1007/s12024-007-9019-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-007-9019-3

Keywords

Navigation