Skip to main content
Log in

Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cryptochromes are blue-light absorbing photoreceptors found in many organisms where they have been involved in numerous growth, developmental, and circadian responses. In Arabidopsis thaliana, two cryptochromes, CRY1 and CRY2, mediate several blue-light-dependent responses including hypocotyl growth inhibition. Our study shows that an increase in the intensity of the ambient magnetic field from 33–44 to 500 μT enhanced growth inhibition in A. thaliana under blue light, when cryptochromes are the mediating photoreceptor, but not under red light when the mediating receptors are phytochromes, or in total darkness. Hypocotyl growth of Arabidopsis mutants lacking cryptochromes was unaffected by the increase in magnetic intensity. Additional cryptochrome-dependent responses, such as blue-light-dependent anthocyanin accumulation and blue-light-dependent degradation of CRY2 protein, were also enhanced at the higher magnetic intensity. These findings show that higher plants are sensitive to the magnetic field in responses that are linked to cryptochrome-dependent signaling pathways. Because cryptochromes form radical pairs after photoexcitation, our results can best be explained by the radical-pair model. Recent evidence indicates that the magnetic compass of birds involves a radical pair mechanism, and cryptochrome is a likely candidate for the avian magnetoreception molecule. Our findings thus suggest intriguing parallels in magnetoreception of animals and plants that appear to be based on common physical properties of photoexcited cryptochromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

cry:

Cryptochrome

FAD:

Flavin adenindinucleotide

phy:

Phytochrome

Trp:

Tryptophan

References

  • Ahmad M (2003) Cryptochromes and flavoprotein blue-light photoreceptors In: Nalwa HS (ed) Handbook of photochemistry and photobiology, vol 4. Academic, New York, pp 149–182

  • Ahmad M, Cashmore AR (1993) HY4 gene of Arabidopsis thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Lin C, Cashmore AR (1995) Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyls elongation. Plant J 8:653–658

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Jarillo J, Cashmore AR (1998) Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell 10:197–208

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Grancher N, Heil M, Black RC, Giovani B, Galland P, Lardemer D (2002) Action spectrum for hypocotyl growth inhibition suggests dosage-dependent synergism among cryptochrome photoreceptors of Arabidopsis thaliana. Plant Physiol 129:774–785

    Article  PubMed  CAS  Google Scholar 

  • Batchelor S, Kay C, McLauchlan K, Shkrob (1993) Time-resolved and modulation methods in the study of the effects of magnetic fields on the yields of free radical reactions. J Phys Chem 97:13250–13258

    Article  CAS  Google Scholar 

  • Briggs W R, Olney M (2001) Photoreceptors in plant photomorphogenesis to date: Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol 125:85–88

    Article  PubMed  CAS  Google Scholar 

  • Brocklehurst B (1976) Spin correlation in the geminate recombination of radical ions in hydrocarbons. 1. Theory of the magnetic field effect. J Chem Soc Faraday Trans 2:1869–1884

    Google Scholar 

  • Brocklehurst B, McLauchlan K (1996) Free radical mechanism for the effects of environmental electromagnetic fields on biological systems. Int J Rad Biol 69:3–24

    Article  PubMed  CAS  Google Scholar 

  • Cintolesi F, Ritz T, Kay C, Timmel C, Hore P (2003) Anisotropic recombination of an immobilized photoinduced radical pair in a 50-μT magnetic field: a model avian photomagnetoreceptor. Chem Phys 294:385–399

    Article  CAS  Google Scholar 

  • Devlin PF, Kay SA (2000) Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12:2499–2510

    Article  PubMed  CAS  Google Scholar 

  • Galland P, Pazur A (2005) Magnetoreception in plants. J Plant Res 118:371–389

    Article  PubMed  Google Scholar 

  • Giovani B, Byrdin M, Ahmad M, Brettel K (2003) Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nature Struct Biol 6:489–490

    Article  CAS  Google Scholar 

  • Harmer SL, Hogenesch JB, Staume M, Chang HS, Han B, Zhu T, Wang X, Kreps J A, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circdian clock. Science 290:2110–2113

    Article  PubMed  CAS  Google Scholar 

  • Kubasek WL, Shirley BW, McKillop A, Goodman H, Briggs W, Ausubel FM (1992) Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Shalitin D (2003) Cryptochrome structure and signal transduction. Annu Rev Plant Biol 54:469–496

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci USA 95:2686–2690

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Edge R, Henbest K, Timmel CR, Hore PJ, Gast P (2005) Magnetic field effect on singlet oxygen production in a biochemical system. Chem Communicat 2:174–176

    Article  CAS  Google Scholar 

  • Möller A, Sagasser S, Wiltschko W, Schierwater B (2004) Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften 91:585–588

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R (2004) Cryptochromes and neuronal-activity markers colocalize in the retina of migra-tory birds durign migratory orienttaion. Proc Natl Acad Sci USA 101:14294–14299

    Article  PubMed  CAS  Google Scholar 

  • Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995) Phytochromes: photosensory perception and signal transduction. Science 268:675–680

    Article  PubMed  CAS  Google Scholar 

  • Redei GP (1962) Single locus heterosis. Z Vererbungsl 93:164–170

    Google Scholar 

  • Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718

    Article  PubMed  CAS  Google Scholar 

  • Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W (2004) Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429:177–180

    Article  PubMed  CAS  Google Scholar 

  • Schulten K (1982) Magnetic field effects in chemistry and biology. Festkörperprobleme 22:61–83

    CAS  Google Scholar 

  • Schulten K, Staerk H, Weller A, Werner HJ, Nickel B (1976) Magnetic field dependence of the geminate recombination of radical ion pairs in polar solvents. Z Phys Chem NF 101:371–390

    CAS  Google Scholar 

  • Semm P, Demaine C (1986) Neurophysiological properties of magnetic cells in the pigeon’s visual system. J Comp Physiol A 159:619–625

    Article  PubMed  CAS  Google Scholar 

  • Thalau P, Ritz T, Stapput K, Wiltschko R, Wiltschko W (2005) Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field. Naturwissenschaften 92:86–90

    Article  PubMed  CAS  Google Scholar 

  • Timmel C, Till U, Brocklehurst K, McLauchlan K, Hore P (1998) Effects of weak magnetic fields on free radical recombination reactions. Mol Phys 95:71–89

    Article  CAS  Google Scholar 

  • Weaver J, Vaughan T, Astumian D (2000) Biological sensing of small field differences by magnetically sensitive chemical reactions. Nature 405:707–709

    Article  PubMed  CAS  Google Scholar 

  • Weber S (2005) Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. Biochem Biophys Acta 1707:1–23

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Springer, Berlin Heidelberg New York

  • Wiltschko W, Wiltschko R (2002) Magnetic compass orientation in birds and its physiolo-gical basis. Naturwissenschaften 89:445–452

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception. J Comp Physiol 191:675–693

    Article  Google Scholar 

  • Wiltschko W, Traudt J, Güntürkün O, Prior H, Wiltschko R (2002) Lateralisation of magnetic compass orientation in a migratory birds. Nature 419:467–470

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko R, Ritz T, Stapput K, Thalau P, Wiltschko W (2005) Two different types of light-dependent responses to magnetic fields in birds. Curr Biol 15:1518–1523

    Article  PubMed  CAS  Google Scholar 

  • Zeugner A, Byrdin M, Bouly J-P, Bakrim N, Giovani B, Brettel K, Ahmad M (2005) Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function. J Biol Chem 280:19437–19440

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (grant 0343737 to M.A.), the Human Frontier Science Foundation (grant to R.W. and T.R.) and the Deutsche Forschungsgemeinschaft (grant to W.W.). T.R. thanks the Sloan foundation for support. We thank K. Stapput and B. Siegmund for their help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Margaret Ahmad or Wolfgang Wiltschko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, M., Galland, P., Ritz, T. et al. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana . Planta 225, 615–624 (2007). https://doi.org/10.1007/s00425-006-0383-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0383-0

Keywords

Navigation