Home The proprotein convertases and their implication in sterol and/or lipid metabolism
Article
Licensed
Unlicensed Requires Authentication

The proprotein convertases and their implication in sterol and/or lipid metabolism

  • Nabil G. Seidah , Abdel Majid Khatib and Annik Prat
Published/Copyright: July 20, 2006
Biological Chemistry
From the journal Volume 387 Issue 7

Abstract

The proprotein convertases represent a family of nine proteinases, comprising seven basic amino acid-specific subtilisin-like serine proteinases related to yeast kexin, known as PC1/3, PC2, furin, PC4, PC5/6, PACE4 and PC7, and two other subtilases that cleave at non-basic residues, called SKI-1/S1P and NARC-1/PCSK9. The present review concentrates on the regulatory role played by some of these convertases in cholesterol and lipid metabolism. Thus, PC5/6, PACE4 and Furin upregulate high-density lipoprotein (HDL) levels via the inactivation of endothelial and lipoprotein lipases. The SKI-1/S1P-directed cleavage of membrane-bound transcription factors known as sterol regulatory element binding proteins (SREBP-1 and SREBP-2) results in upregulation of the synthesis of sterols, lipids and the LDL receptor (LDLR). Finally, PCSK9 downregulates the protein levels of the LDLR by enhancement of its intracellular metabolic pathway in subcellular acidic compartments.

:

Corresponding author

References

Abifadel, M., Varret, M., Rabes, J.P., Allard, D., Ouguerram, K., Devillers, M., Cruaud, C., Benjannet, S., Wickham, L., Erlich, D., et al. (2003). Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet.34, 154–156.10.1038/ng1161Search in Google Scholar

Attie, A.D. and Seidah, N.G. (2005). Dual regulation of the LDL receptor – some clarity and new questions. Cell Metab.1, 290–292.10.1016/j.cmet.2005.04.006Search in Google Scholar

Basak, A., Chretien, M., and Seidah, N.G. (2002). A rapid fluorometric assay for the proteolytic activity of SKI-1/S1P based on the surface glycoprotein of the hemorrhagic fever Lassa virus. FEBS Lett.514, 333–339.10.1016/S0014-5793(02)02394-3Search in Google Scholar

Benjannet, S., Rhainds, D., Essalmani, R., Mayne, J., Wickham, L., Jin, W., Asselin, M.C., Hamelin, J., Varret, M., Allard, D., et al. (2004). NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J. Biol. Chem.279, 48865–48875.10.1074/jbc.M409699200Search in Google Scholar PubMed

Bergeron, E., Vincent, M.J., Wickham, L., Hamelin, J., Basak, A., Nichol, S.T., Chretien, M., and Seidah, N.G. (2005). Implication of proprotein convertases in the processing and spread of severe acute respiratory syndrome coronavirus. Biochem. Biophys. Res. Commun.326, 554–563.10.1016/j.bbrc.2004.11.063Search in Google Scholar PubMed PubMed Central

Brown, M.S. and Goldstein, J.L. (1999). A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl. Acad. Sci. USA96, 11041–11048.10.1073/pnas.96.20.11041Search in Google Scholar PubMed PubMed Central

Cohen, J., Pertsemlidis, A., Kotowski, I.K., Graham, R., Garcia, C.K., and Hobbs, H.H. (2005). Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet.37, 161–165.10.1038/ng1509Search in Google Scholar PubMed

Constam, D.B. and Robertson, E.J. (2000). SPC4/PACE4 regulates a TGFβ signaling network during axis formation. Genes Dev.14, 1146–1155.10.1101/gad.14.9.1146Search in Google Scholar

De Bie, I., Marcinkiewicz, M., Malide, D., Lazure, C., Nakayama, K., Bendayan, M., and Seidah, N.G. (1996). The isoforms of proprotein convertase PC5 are sorted to different subcellular compartments. J. Cell Biol.135, 1261–1275.10.1083/jcb.135.5.1261Search in Google Scholar PubMed PubMed Central

De Cat, B., Muyldermans, S.Y., Coomans, C., Degeest, G., Vanderschueren, B., Creemers, J., Biemar, F., Peers, B., and David, G. (2003). Processing by proprotein convertases is required for glypican-3 modulation of cell survival, Wnt signaling, and gastrulation movements. J. Cell Biol.163, 625–635.10.1083/jcb.200302152Search in Google Scholar PubMed PubMed Central

Dubuc, G., Chamberland, A., Wassef, H., Davignon, J., Seidah, N.G., Bernier, L., and Prat, A. (2004). Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol.24, 1454–1459.10.1161/01.ATV.0000134621.14315.43Search in Google Scholar PubMed

Elagoz, A., Benjannet, S., Mammarbassi, A., Wickham, L., and Seidah, N.G. (2002). Biosynthesis and cellular trafficking of the convertase SKI-1/S1P: ectodomain shedding requires SKI-1 activity. J. Biol. Chem.277, 11265–11275.10.1074/jbc.M109011200Search in Google Scholar PubMed

Espenshade, P.J., Cheng, D., Goldstein, J.L., and Brown, M.S. (1999). Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. J. Biol. Chem.274, 22795–22804.10.1074/jbc.274.32.22795Search in Google Scholar PubMed

Essalmani, R., Hamelin, J., Marcinkiewicz, J., Chamberland, A., Mbikay, M., Chretien, M., Seidah, N.G., and Prat, A. (2006). Deletion of the gene encoding proprotein convertase 5/6 causes early embryonic lethality in the mouse. Mol. Cell. Biol.26, 354–361.10.1128/MCB.26.1.354-361.2006Search in Google Scholar PubMed PubMed Central

Fujinaga, M., Cherney, M.M., Oyama, H., Oda, K., and James, M.N. (2004). The molecular structure and catalytic mechanism of a novel carboxyl peptidase from Scytalidium lignicolum. Proc. Natl. Acad. Sci. USA101, 3364–3369.10.1073/pnas.0400246101Search in Google Scholar PubMed PubMed Central

Fuki, I.V., Blanchard, N., Jin, W., Marchadier, D.H., Millar, J.S., Glick, J.M., and Rader, D.J. (2003). Endogenously produced endothelial lipase enhances binding and cellular processing of plasma lipoproteins via heparan sulfate proteoglycan-mediated pathway. J. Biol. Chem.278, 34331–34338.10.1074/jbc.M302181200Search in Google Scholar PubMed

Gauster, M., Hrzenjak, A., Schick, K., and Frank, S. (2005). Endothelial lipase is inactivated upon cleavage by the members of the proprotein convertase family. J. Lipid Res.46, 977–987.10.1194/jlr.M400500-JLR200Search in Google Scholar PubMed

Haze, K., Yoshida, H., Yanagi, H., Yura, T., and Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell10, 3787–3799.10.1091/mbc.10.11.3787Search in Google Scholar PubMed PubMed Central

Jaye, M., Lynch, K.J., Krawiec, J., Marchadier, D., Maugeais, C., Doan, K., South, V., Amin, D., Perrone, M., and Rader, D.J. (1999). A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet.21, 424–428.10.1038/7766Search in Google Scholar PubMed

Jin, W., Fuki, I.V., Seidah, N.G., Benjannet, S., Glick, J.M., and Rader, D.J. (2005). Proprotein convertases are responsible for proteolysis and inactivation of endothelial lipase. J. Biol. Chem.280, 36551–36559.10.1074/jbc.M502264200Search in Google Scholar PubMed

Khatib, A.M., Siegfried, G., Prat, A., Luis, J., Chretien, M., Metrakos, P., and Seidah, N.G. (2001). Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells: importance of insulin-like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions. J. Biol. Chem.276, 30686–30693.10.1074/jbc.M101725200Search in Google Scholar

Khatib, A.M., Siegfried, G., Chretien, M., Metrakos, P., and Seidah, N.G. (2002). Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. Am. J. Pathol.160, 1921–1935.10.1016/S0002-9440(10)61140-6Search in Google Scholar

Lenz, O., ter Meulen, J., Klenk, H.D., Seidah, N.G., and Garten, W. (2001). The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc. Natl. Acad. Sci. USA98, 12701–12705.10.1073/pnas.221447598Search in Google Scholar

Maxwell, K.N. and Breslow, J.L. (2004). Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc. Natl. Acad. Sci. USA101, 7100–7105.10.1073/pnas.0402133101Search in Google Scholar

Mouchantaf, R., Watt, H.L., Sulea, T., Seidah, N.G., Alturaihi, H., Patel, Y.C., and Kumar, U. (2004). Prosomatostatin is proteolytically processed at the amino terminal segment by subtilase SKI-1. Regul. Pept.120, 133–140.10.1016/j.regpep.2004.02.022Search in Google Scholar

no, M., Raab, G., Lau, K., Abraham, J.A., and Klagsbrun, M. (1994). Purification and characterization of transmembrane forms of heparin-binding EGF-like growth factor. J. Biol. Chem.269, 31315–31321.10.1016/S0021-9258(18)47425-XSearch in Google Scholar

Nour, N., Basak, A., Chretien, M., and Seidah, N.G. (2003). Structure-function analysis of the prosegment of the proprotein convertase PC5A. J. Biol. Chem.278, 2886–2895.10.1074/jbc.M208009200Search in Google Scholar PubMed

Nour, N., Mayer, G., Mort, J.S., Salvas, A., Mbikay, M., Morrison, C.J., Overall, C.M., and Seidah, N.G. (2005). The cysteine-rich domain of the secreted proprotein convertases PC5A and PACE4 functions as a cell surface anchor and interacts with tissue inhibitors of metalloproteinases. Mol. Biol. Cell16, 5215–5226.10.1091/mbc.e05-06-0504Search in Google Scholar PubMed PubMed Central

Puente, X.S., Sanchez, L.M., Overall, C.M., and Lopez-Otin, C. (2003). Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet.4, 544–558.10.1038/nrg1111Search in Google Scholar PubMed

Pullikotil, P., Vincent, M., Nichol, S.T., and Seidah, N.G. (2004). Development of protein-based inhibitors of the proprotein of convertase SKI-1/S1P: processing of SREBP-2, ATF6, and a viral glycoprotein. J. Biol. Chem.279, 17338–17347.10.1074/jbc.M313764200Search in Google Scholar PubMed

Raggo, C., Rapin, N., Stirling, J., Gobeil, P., Smith-Windsor, E., O'Hare, P., and Misra, V. (2002). Luman, the cellular counterpart of herpes simplex virus VP16, is processed by regulated intramembrane proteolysis. Mol. Cell Biol.22, 5639–5649.10.1128/MCB.22.16.5639-5649.2002Search in Google Scholar

Rashid, S., Curtis, D.E., Garuti, R., Anderson, N.N., Bashmakov, Y., Ho, Y.K., Hammer, R.E., Moon, Y.A., and Horton, J.D. (2005). Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl. Acad. Sci. USA102, 5374–5379.10.1073/pnas.0501652102Search in Google Scholar

Rawson, R.B. (2003). Control of lipid metabolism by regulated intramembrane proteolysis of sterol regulatory element binding proteins (SREBPs). Biochem. Soc. Symp. 221–231.Search in Google Scholar

Rawson, R.B., Zelenski, N.G., Nijhawan, D., Ye, J., Sakai, J., Hasan, M.T., Chang, T.Y., Brown, M.S., and Goldstein, J.L. (1997). Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell1, 47–57.10.1016/S1097-2765(00)80006-4Search in Google Scholar

Rhee, D.K., Marcelino, J., Al Mayouf, S., Schelling, D.K., Bartels, C.F., Cui, Y., Laxer, R., Goldbach-Mansky, R., and Warman, M.L. (2005). Consequences of disease-causing mutations on lubricin protein synthesis, secretion, and post-translational processing. J. Biol. Chem.280, 31325–31332.10.1074/jbc.M505401200Search in Google Scholar

Richer, M.J., Keays, C.A., Waterhouse, J., Minhas, J., Hashimoto, C., and Jean, F. (2004). The Spn4 gene of Drosophila encodes a potent furin-directed secretory pathway serpin. Proc. Natl. Acad. Sci. USA101, 10560–10565.10.1073/pnas.0401406101Search in Google Scholar

Sakai, J., Rawson, R.B., Espenshade, P.J., Cheng, D., Seegmiller, A.C., Goldstein, J.L., and Brown, M.S. (1998). Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol. Cell2, 505–514.10.1016/S1097-2765(00)80150-1Search in Google Scholar

Sanchez, A.J., Vincent, M.J., Erickson, B.R., and Nichol, S.T. (2006). Crimean-Congo hemorrhagic fever virus glycoprotein precursor is cleaved by furin-like and SKI-1 proteases to generate a novel 38-kilodalton glycoprotein. J. Virol.80, 514–525.10.1128/JVI.80.1.514-525.2006Search in Google Scholar

Schlombs, K., Wagner, T., and Scheel, J. (2003). Site-1 protease is required for cartilage development in zebrafish. Proc. Natl. Acad. Sci. USA100, 14024–14029.10.1073/pnas.2331794100Search in Google Scholar

Seidah, N.G. (2006). Unexpected similarity between the cytosolic West Nile virus NS3 and the secretory furin-like serine proteinases. Biochem. J.393, e1–e3.10.1042/BJ20051787Search in Google Scholar

Seidah, N.G. and Chretien, M. (1999). Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res.848, 45–62.10.1016/S0006-8993(99)01909-5Search in Google Scholar

Seidah, N.G. and Prat, A. (2002). Precursor convertases in the secretory pathway, cytosol and extracellular milieu. Essays Biochem.38, 79–94.Search in Google Scholar

Seidah, N.G., Mowla, S.J., Hamelin, J., Mamarbachi, A.M., Benjannet, S., Toure, B.B., Basak, A., Munzer, J.S., Marcinkiewicz, J., Zhong, M., et al. (1999a). Mammalian subtilisin/kexin isozyme SKI-1: a widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc. Natl. Acad. Sci. USA96, 1321–1326.10.1073/pnas.96.4.1321Search in Google Scholar

Seidah, N.G., Benjannet, S., Hamelin, J., Mamarbachi, A.M., Basak, A., Marcinkiewicz, J., Mbikay, M., Chretien, M., and Marcinkiewicz, M. (1999b). The subtilisin/kexin family of precursor convertases. Emphasis on PC1, PC2/7B2, POMC and the novel enzyme SKI-1. Ann. NY Acad. Sci.885, 57–74.10.1111/j.1749-6632.1999.tb08665.xSearch in Google Scholar

Seidah, N.G., Benjannet, S., Wickham, L., Marcinkiewicz, J., Jasmin, S.B., Stifani, S., Basak, A., Prat, A., and Chretien, M. (2003). The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl. Acad. Sci. USA100, 928–933.10.1073/pnas.0335507100Search in Google Scholar

Shen, J., Chen, X., Hendershot, L., and Prywes, R. (2002). ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell3, 99–111.10.1016/S1534-5807(02)00203-4Search in Google Scholar

Siezen, R.J. and Leunissen, J.A. (1997). Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci.6, 501–523.10.1002/pro.5560060301Search in Google Scholar PubMed PubMed Central

Stieneke-Grober, A., Vey, M., Angliker, H., Shaw, E., Thomas, G., Roberts, C., Klenk, H.D., and Garten, W. (1992). Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J.11, 2407–2414.10.1002/j.1460-2075.1992.tb05305.xSearch in Google Scholar PubMed PubMed Central

Stirling, J. and O'Hare, P. (2006). CREB4, a transmembrane bZip transcription factor and potential new substrate for regulation and cleavage by S1P. Mol. Biol. Cell17, 413–426.10.1091/mbc.e05-06-0500Search in Google Scholar PubMed PubMed Central

Tang, M., Mikhailik, A., Pauli, I., Giudice, L.C., Fazelabas, A.T., Tulac, S., Carson, D.D., Kaufman, D.G., Barbier, C., Creemers, J.W., and Tabibzadeh, S. (2005). Decidual differentiation of stromal cells promotes proprotein convertase 5/6 expression and lefty processing. Endocrinology146, 5313–5320.10.1210/en.2005-0684Search in Google Scholar PubMed

Taylor, N.A., Van de Ven, W.J., and Creemers, J.W. (2003). Curbing activation: proprotein convertases in homeostasis and pathology. FASEB J.17, 1215–1227.10.1096/fj.02-0831revSearch in Google Scholar PubMed

Thomas, G. (2002). Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol.3, 753–766.10.1038/nrm934Search in Google Scholar PubMed PubMed Central

Tsuji, A., Sakurai, K., Kiyokage, E., Yamazaki, T., Koide, S., Toida, K., Ishimura, K., and Matsuda, Y. (2003). Secretory proprotein convertases PACE4 and PC6A are heparin-binding proteins which are localized in the extracellular matrix. Potential role of PACE4 in the activation of proproteins in the extracellular matrix. Biochim. Biophys. Acta1645, 95–104.10.1016/S1570-9639(02)00532-0Search in Google Scholar

Vey, M., Schafer, W., Berghofer, S., Klenk, H.D., and Garten, W. (1994). Maturation of the trans-Golgi network protease furin: compartmentalization of propeptide removal, substrate cleavage, and COOH-terminal truncation. J. Cell Biol.127, 1829–1842.10.1083/jcb.127.6.1829Search in Google Scholar

Vincent, M.J., Sanchez, A.J., Erickson, B.R., Basak, A., Chretien, M., Seidah, N.G., and Nichol, S.T. (2003). Crimean-Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI-1. J. Virol.77, 8640–8649.10.1128/JVI.77.16.8640-8649.2003Search in Google Scholar

Yang, T., Espenshade, P.J., Wright, M.E., Yabe, D., Gong, Y., Aebersold, R., Goldstein, J.L., and Brown, M.S. (2002). Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell110, 489–500.10.1016/S0092-8674(02)00872-3Search in Google Scholar

Ye, J., Rawson, R.B., Komuro, R., Chen, X., Dave, U.P., Prywes, R., Brown, M.S., and Goldstein, J.L. (2000). ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell6, 1355–1364.10.1016/S1097-2765(00)00133-7Search in Google Scholar

Zhang, K. and Kaufman, R.J. (2006). The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology66, S102–S109.10.1212/01.wnl.0000192306.98198.ecSearch in Google Scholar PubMed

Zheng, M., Seidah, N.G., and Pintar, J.E. (1997). The developmental expression in the rat CNS and peripheral tissues of proteases PC5 and PACE4 mRNAs: comparison with other proprotein processing enzymes. Dev. Biol.181, 268–283.10.1006/dbio.1996.8402Search in Google Scholar PubMed

Zhong, M., Munzer, J.S., Basak, A., Benjannet, S., Mowla, S.J., Decroly, E., Chretien, M., and Seidah, N.G. (1999). The prosegments of furin and PC7 as potent inhibitors of proprotein convertases. In vitro and ex vivo assessment of their efficacy and selectivity. J. Biol. Chem.274, 33913–33920.10.1074/jbc.274.48.33913Search in Google Scholar PubMed

Published Online: 2006-07-20
Published in Print: 2006-07-01

©2006 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. 4th General Meeting of the International Proteolysis Society/International Conference on Protease Inhibitors
  2. Extracellular granzymes: current perspectives
  3. Impact of the N-terminal amino acid on targeted protein degradation
  4. Structural aspects of recently discovered viral deubiquitinating activities
  5. Cysteine cathepsins and caspases in silicosis
  6. The proprotein convertases and their implication in sterol and/or lipid metabolism
  7. PREPL: a putative novel oligopeptidase propelled into the limelight
  8. Human cathepsin L rescues the neurodegeneration and lethality in cathepsin B/L double-deficient mice
  9. Helicobacter pylori-induced downregulation of the secretory leukocyte protease inhibitor (SLPI) in gastric epithelial cell lines and its functional relevance for H. pylori-mediated diseases
  10. Increased local levels of granulocyte colony-stimulating factor are associated with the beneficial effect of pre-elafin (SKALP/trappin-2/WAP3) in experimental emphysema
  11. Interaction of a novel form of Pseudomonas aeruginosa alkaline protease (aeruginolysin) with interleukin-6 and interleukin-8
  12. Analysis of aldosterone-induced differential receptor-independent protein patterns using 2D-electrophoresis and mass spectrometry
  13. Modeling the 3D structure of wheat subtilisin/chymotrypsin inhibitor (WSCI). Probing the reactive site with two susceptible proteinases by time-course analysis and molecular dynamics simulations
  14. A stable analogue of glucose-dependent insulinotropic polypeptide, GIP(LysPAL16), enhances functional differentiation of mouse embryonic stem cells into cells expressing islet-specific genes and hormones
  15. Transcription factor FOXM1c is repressed by RB and activated by cyclin D1/Cdk4
  16. Despite its strong transactivation domain, transcription factor FOXM1c is kept almost inactive by two different inhibitory domains
  17. Inhibition of calcineurin by infusion of CsA causes hyperphosphorylation of tau and is accompanied by abnormal behavior in mice
  18. Isolation and properties of extracellular proteinases of Penicillium marneffei
  19. Isolation and comparative characterization of Ki-67 equivalent antibodies from the HuCAL® phage display library
Downloaded on 9.6.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.110/html
Scroll to top button