Skip to main content
Log in

Genomic comparison of Yersinia pestis and Yersinia pseudotuberculosis by combination of suppression subtractive hybridization and DNA microarray

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In order to further figure out the genetic differences between Yersinia pestis and Yersinia pseudotuberculosis, and to provide novel insights into the evolution of Y. pestis, we compared the genomes of Y. pseudotuberculosis serogroup I strain ATCC29833 and Y. pestis Antiqua strain 49006 using a combination of suppression subtractive hybridization (SSH) and comparative genomic hybridization with DNAs from a diverse panel of Y. pestis and Y. pseudotuberculosis strains. SSH followed by BLAST analysis revealed 112 SSH fragments specific to strain ATCC29833, compared to the genomic sequence data of Y. pestis strains CO92, KIM and 91001. We identified 17 SSH fragments that appeared to be newly determined genetic contents of Y. pseudotuberculosis. The combination of SSH and microarray analysis showed that the parallel loss of genes contributed greatly not only to the significant genomic divergence between Y. pestis and Y. pseudotuberculosis but also to the intra-species microevolution of both of species. The results confirmed our earlier hypothesis that Y. pestis Antiqua isolates from the natural plague focus B in China represented the most ancestral strains in China, hence phylogenetically the closest isolates to Y. pseudotuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96:14043–14048

    Article  PubMed  CAS  Google Scholar 

  • Bercovier H et al (1980) Intra- and interspecies relatedness of Yersinia pestis by DNA hybridization and its relationship to Yersinia pseudotuberculosis. Curr Microbiol 4:225–229

    Article  CAS  Google Scholar 

  • Boyd EF, Brussow H (2002) Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 10:521–529

    Article  PubMed  CAS  Google Scholar 

  • Bruneteau M, Minka S (2003) Lipopolysaccharides of bacterial pathogens from the genus Yersinia: a mini-review. Biochimie 85:145–152

    Article  PubMed  CAS  Google Scholar 

  • Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    Article  PubMed  Google Scholar 

  • Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276

    Article  PubMed  CAS  Google Scholar 

  • Chain PS et al (2004) Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 101:13826–13831

    Article  Google Scholar 

  • Deng W et al (2002) Genome sequence of Yersinia pestis KIM. J Bacteriol 184:4601–4611

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Hai R et al (2004) Molecular biological characteristics and genetic significance of Yersinia pestis in China. Zhonghua Liu Xing Bing Xue Za Zhi 25:509–513

    PubMed  Google Scholar 

  • Hinchliffe SJ et al (2003) Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. Genome Res 13:2018–2029

    Article  PubMed  CAS  Google Scholar 

  • Ji S et al (1990) The discovery and research of plague natural foci in China (in Chinese). Chin J Epidemiol 11(Suppl):1–41

    Google Scholar 

  • Mantripragada KK, Buckley PG, de Stahl TD, Dumanski JP (2004) Genomic microarrays in the spotlight. Trends Genet 20:87–94

    Article  PubMed  CAS  Google Scholar 

  • Parkhill J et al (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413:523–527

    Article  PubMed  CAS  Google Scholar 

  • Perry RD, Fetherston JD (1997) Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10:35–66

    PubMed  CAS  Google Scholar 

  • Radnedge L, Agron PG, Worsham PL, Andersen GL (2002) Genome plasticity in Yersinia pestis. Microbiology 148:1687–1698

    PubMed  CAS  Google Scholar 

  • Skurnik M, Peippo A, Ervela E (2000) Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Mol Microbiol 37:316–330

    Article  PubMed  CAS  Google Scholar 

  • Song Y et al (2004) Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res 11:179–197

    Article  PubMed  CAS  Google Scholar 

  • Tong Z et al (2005) Pseudogene accumulation might promote the adaptive microevolution of Yersinia pestis. J Med Microbiol 54:259–268

    Article  PubMed  CAS  Google Scholar 

  • Winstanley C (2002) Spot the difference: applications of subtractive hybridisation to the study of bacterial pathogens. J Med Microbiol 51:459–467

    PubMed  CAS  Google Scholar 

  • Wren BW (2003) The yersiniae—a model genus to study the rapid evolution of bacterial pathogens. Nat Rev Microbiol 1:55–64

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Han Y, Song Y, Huang P, Yang R (2004a) Comparative and evolutionary genomics of Yersinia pestis. Microbes Infect 6:1226–1234

    Article  PubMed  CAS  Google Scholar 

  • Zhou D et al (2004b) DNA microarray analysis of genome dynamics in Yersinia pestis: insights into bacterial genome microevolution and niche adaptation. J Bacteriol 186:5138–5146

    Article  PubMed  CAS  Google Scholar 

  • Zhou D et al (2004c) Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J Bacteriol 186:5147–5152

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Jingxiang Li and Changfeng Li in Beijing Genomics Institute for their assistance in sequencing. Financial support for this work came from the National Natural Science Foundation of China (No. 30471554).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifu Yang.

Additional information

Xiaoyi Wang and Dongsheng Zhou contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhou, D., Qin, L. et al. Genomic comparison of Yersinia pestis and Yersinia pseudotuberculosis by combination of suppression subtractive hybridization and DNA microarray. Arch Microbiol 186, 151–159 (2006). https://doi.org/10.1007/s00203-006-0129-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0129-1

Keywords

Navigation