Skip to main content
Log in

Theoretical investigation of the behavior of titratable groups in proteins

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This paper presents a theoretical analysis of the titration behavior of strongly interacting titratable residues in proteins. Strongly interacting titratable residues exist in many proteins such as for instance bacteriorhodopsin, cytochrome c oxidase, cytochrome bc1, or the photosynthetic reaction center. Strong interaction between titratable groups can lead to irregular titration behavior. We analyze under which circumstances titration curves can become irregular. We demonstrate that conformational flexibility alone can not lead to irregular titration behavior. Strong interaction between titratable groups is a necessary, but not sufficient condition for irregular titration curves. In addition, the two interacting groups also need to titrate in the same pH-range. These two conditions together lead to irregular titration curves. The mutation of a single residue within a cluster of interacting titratable residues can influence the titration behavior of the other titratable residues in the cluster. We demonstrate this effect on a cluster of four interacting residues. This example underlines that mutational studies directed at identifying the role of a certain titratable residue in a cluster of interacting residues should always be accompanied by an analysis of the effect of the mutation on the titration behavior of the other residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Calimet and G. M. Ullmann, The effect of a transmembrane pH gradient on protonation probabilities of bacteriorhodopsin, J. Mol. Biol., 2004, 339, 571–589.

    Article  CAS  Google Scholar 

  2. A. R. Klingen and G. M. Ullmann, Negatively charged residues and hydrogen bonds tune the ligand histidine pKa values of Rieske iron–sulfur proteins, Biochemistry, 2004, 43, 12383–12389.

    Article  CAS  Google Scholar 

  3. A. Taly, P. Sebban, J. C. Smith and G. M. Ullmann, The position of QB in the photosynthetic reaction center depends on pH: a theoretical analysis of the proton uptake upon QB reduction, Biophys. J., 2003, 84, 2090–2098.

    Article  CAS  Google Scholar 

  4. Y. Song, J. Mao and M. R. Gunner, Calculation of proton transfers in bacteriorhodopsin bR and M intermediates, Biochemistry, 2003, 42, 9875–9888.

    Article  CAS  Google Scholar 

  5. R. E. Georgescu, E. G. Alexov and M. R. Gunner, Combining conformational flexibility and continuum electrostatics for calculating pKas in proteins, Biophys. J., 2002, 83, 1731–1748.

    Article  CAS  Google Scholar 

  6. B. Rabenstein and E. W. Knapp, Calculated pH-dependent population of carbon-monoxy-myoglobin conformers, Biophys. J., 2001, 80, 1141–1150.

    Article  CAS  Google Scholar 

  7. B. Rabenstein, G. M. Ullmann, E.-W. Knapp, Energetics of electron transfer and protonation reactions of the quinones in the photosynthetic reaction center of Rhodopseudomonas viridis, Biochemistry, 1998, 37, 2488–2495.

    Article  CAS  Google Scholar 

  8. B. Rabenstein, G. M. Ullmann, E.-W. Knapp, Calculation of protonation patterns in proteins with conformational relaxation-application to the photosynthetic reaction center, Eur. Biophys. J., 1998, 27, 628–637.

    Article  Google Scholar 

  9. E. Demchuk and R. C. Wade, Improving the Continuum Dielectric Approach to Calculating pKas of Ionizable Groups in Proteins, J. Phys. Chem., 1996, 100, 17373–17387.

    Article  CAS  Google Scholar 

  10. P. Beroza and D. A. Case, Including Side Chain Flexibility in Continuum Electrostatic Calculations of Protein Titration, J. Phys. Chem., 1996, 100, 20156–20163.

    Article  CAS  Google Scholar 

  11. M. K. Gilson, Multiple-Site Titration and Molecular Modelling: Two Rapid Methods for Computing Energies and Forces for Ionizable Groups in Proteins, Proteins: Struct., Funct., Genet., 1993, 15, 266–282.

    Article  CAS  Google Scholar 

  12. A. Onufriev, A. Smondyrev and D. Bashford, Proton affinity changes driving unidirectional proton transport in the bacteriorhodopsin photocycle, J. Mol. Biol., 2003, 332, 1183–1193.

    Article  CAS  Google Scholar 

  13. B. Rabenstein and E. W. Knapp, Calculated pH-dependent population and protonation of carbon-monoxy-myoglobin conformers, Biophys. J., 2001, 80, 1141–1150.

    Article  CAS  Google Scholar 

  14. T. You and D. Bashford, Conformation and Hydrogen Ion Titration of Proteins: A Continuum Electrostatic Model with Conformational Flexibility, Biophys. J., 1995, 69, 1721–1733.

    Article  CAS  Google Scholar 

  15. M. Felemez, P. Bernard, G. Schlewer and B. Spiess, Inframolecular Protonation Process of myo-Inositol 1,4,5-Tris(phosphate) and Related Compounds: Dynamics of the Intramolecular Interactions and Evidence of C–HO Hydrogen Bonding, J. Am. Chem. Soc., 2000, 122, 3156–3165.

    Article  CAS  Google Scholar 

  16. E. Bombarda, N. Morellet, H. Cherradi, B. Spiess, S. Bouaziz, E. Grell, B. P. Roques and Y. Mely, Determination of the pKa of the four Zn2+-coordinating residues of the distal finger motif of the HIV−1 nucleocapsid protein: consequences on the binding of Zn2+, J. Mol. Biol., 2001, 310, 659–672.

    Article  CAS  Google Scholar 

  17. A. Onufriev, D. A. Case and G. M. Ullmann, A novel view of pH titration in biomolecules, Biochemistry, 2001, 40, 3413–3419.

    Article  CAS  Google Scholar 

  18. G. M. Ullmann, Relations between protonation constants and titration curves in polyprotic acids: A critical view, J. Phys. Chem. B, 2003, 107, 1263–1271.

    Article  CAS  Google Scholar 

  19. A. Onufriev and G. M. Ullmann, Decomposing complex ligand binding into simple components: connections between microscopic and macroscopic models, J. Phys. Chem. B, 2004, 108, 11157–11169.

    Article  CAS  Google Scholar 

  20. A. Warshel and S. T. Russel, Calculations of Electrostatic Interaction in Biological Systems and in Solution, Q. Rev. Biophys., 1984, 17, 283–422.

    Article  CAS  Google Scholar 

  21. C. Tanford and J. G. Kirkwood, Theory of Protein Titration Curves, J. Am. Chem. Soc., 1957, 79, 5333–5347.

    Article  CAS  Google Scholar 

  22. C. Tanford and R. Roxby, Interpretation of Protein Titration Curves. Application to Lysozyme, Biochemistry, 1972, 11, 2192–2198.

    Article  CAS  Google Scholar 

  23. D. Bashford and M. Karplus, Multiple-Site Titration Curves of Proteins: An Analysis of Exact and Approximate Methods for Their Calculations, J. Phys. Chem., 1991, 95, 9556–9561.

    Article  CAS  Google Scholar 

  24. J. L. Sudmeier and C. N. Reilley, Nuclear Magnetic Resonance Studies of Protonation of Polyamine and Aminocarboxylate Compounds in Aqueous Solution, Anal. Chem., 1964, 36, 1698–1706.

    Article  CAS  Google Scholar 

  25. M. Borkovec and G. J. M. Koper, Ising Models of Polyprotic Acids and Bases, J. Phys. Chem., 1994, 98, 6038–6045.

    Article  CAS  Google Scholar 

  26. J. A. Schellman, Macromolecular Binding, Biopolymers, 1975, 14, 999–1018.

    Article  CAS  Google Scholar 

  27. B. Noszal, Group Constant: A measure of Submolecular Basicity, J. Phys. Chem., 1986, 90, 4104–4110.

    Article  CAS  Google Scholar 

  28. I. M. Klotz, Ligand-Receptor Energetics, Wiley & Sons Inc., New York, 1997.

    Google Scholar 

  29. J. Wyman and S. J. Gill, Binding and Linkage, University Science Books, Mill Valley, CA, 1990.

    Google Scholar 

  30. D. Bashford and M. Karplus, pKas of ionizable groups in proteins: atomic detail from a continuum electrostatic model, Biochemistry, 1990, 29, 10219–10225.

    Article  CAS  Google Scholar 

  31. G. M. Ullmann, E.-W. Knapp, Electrostatic models for computing protonation and redox equilibria in proteins, Eur. Biophys. J., 1999, 28, 533–551.

    Article  CAS  Google Scholar 

  32. W. Press, S. Teukolsky, W. Vetterling and B. Flannery, Numerical Recipes in C, Cambridge University Press, Cambridge UK, 2nd edn, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Matthias Ullmann.

Additional information

† This paper was published as part of the special issue on Proton Transfer in Biological Systems.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klingen, A.R., Bombarda, E. & Ullmann, G.M. Theoretical investigation of the behavior of titratable groups in proteins. Photochem Photobiol Sci 5, 588–596 (2006). https://doi.org/10.1039/b515479k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b515479k

Navigation