Skip to main content
Log in

Effect of Genetic Polymorphisms in Cytochrome P450 (CYP) 2C9 and CYP2C8 on the Pharmacokinetics of Oral Antidiabetic Drugs

Clinical Relevance

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus affects up to 8% of the adult population in Western countries. Treatment of this disease with oral antidiabetic drugs is characterised by considerable interindividual variability in pharmacokinetics, clinical efficacy and adverse effects. Genetic factors are known to contribute to individual differences in bioavailability, drug transport, metabolism and drug action. Only scarce data exist on the clinical implications of this genetic variability on adverse drug effects or clinical outcomes in patients taking oral antidiabetics.

The polymorphic enzyme cytochrome P450 (CYP) 2C9 is the main enzyme catalysing the biotransformation of sulphonylureas. Total oral clearance of all studied sulphonylureas (tolbutamide, glibenclamide [glyburide], glimepiride, glipizide) was only about 20% in persons with the CYP2C9*3/*3 genotype compared with carriers of the wild-type genotype CYP2C9*1/*1, and clearance in the heterozygous carriers was between 50% and 80% of that of the wild-type genotypes. For reasons not completely known, the resulting differences in drug effects were much less pronounced. Nevertheless, CYP2C9 genotype-based dose adjustments may reduce the incidence of adverse effects. The magnitude of how doses might be adjusted can be derived from pharmacokinetic studies.

The meglitinide-class drug nateglinide is metabolised by CYP2C9. According to the pharmacokinetic data, moderate dose adjustments based on CYP2C9 genotypes may help in reducing interindividual variability in the antihyperglycaemic effects of nateglinide. Repaglinide is metabolised by CYP2C8 and, according to clinical studies, CYP2C8*3 carriers had higher clearance than carriers of the wild-type genotypes; however, this was not consistent with in vitro data and therefore further studies are needed. CYP2C8*3 is closely linked with CYP2C9*2.

CYP2C8 and CYP3A4 are the main enzymes catalysing biotransformation of the thiazolidinediones troglitazone and pioglitazone, whereas rosiglitazone is metabolised by CYP2C9 and CYP2C8. The biguanide metformin is not significantly metabolised but polymorphisms in the organic cation transporter (OCT) 1 and OCT2 may determine its pharmacokinetic variability.

In conclusion, pharmacogenetic variability plays an important role in the pharmacokinetics of oral antidiabetic drugs; however, to date, the impact of this variability on clinical outcomes in patients is mostly unknown and prospective studies on the medical benefit of CYP genotyping are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Table III

Similar content being viewed by others

References

  1. Harris MI, Flegal KM, Cowie CC, et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in US adults. The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care 1998; 21: 518–24

    Article  PubMed  CAS  Google Scholar 

  2. Harris MI. Diabetes in America: epidemiology and scope of the problem. Diabetes Care 1998; 21 Suppl. 3: C11–4

    PubMed  Google Scholar 

  3. American Diabetes Association. Clinical practice recommendations 2001. Diabetes Care 2001; 24 Suppl. 1: S1–133

    Google Scholar 

  4. Clark Jr MJ, Sterrett JJ, Carson DS. Diabetes guidelines: a summary and comparison of the recommendations of the American Diabetes Association, Veterans Health Administration, and American Association of Clinical Endocrinologists. Clin Ther 2000; 22: 899–910; discussion 898

    Article  PubMed  Google Scholar 

  5. Ajdari A. Pumping liquids using asymmetric electrode arrays. Physical Review E 2000; 61: R45–8

    Article  CAS  Google Scholar 

  6. Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes: scientific review. Jama 2002; 287: 360–72

    Article  PubMed  CAS  Google Scholar 

  7. American Diabetes Association. Clinical practice guidelines. Alexandria (VA): American Diabetes Association, 2004

    Google Scholar 

  8. Carlsen SM. Sulfonylurea-induced hypoglycaemia: an iatrogenic and potentially fatal condition [in Norwegian]. Tidsskr Nor Laegeforen 1997; 117: 3079–82

    PubMed  CAS  Google Scholar 

  9. Evans WE, McLeod HL. Pharmacogenomics: drug disposition, drug targets, and side effects. N Engl J Med 2003; 348: 538–49

    Article  PubMed  CAS  Google Scholar 

  10. Weinshilboum R. Inheritance and drug response. N Engl J Med 2003; 348: 529–37

    Article  PubMed  Google Scholar 

  11. Finta C, Zaphiropoulos PG. The human CYP2C locus: a prototype for intergenic and exon repetition splicing events. Genomics 2000; 63: 433–8

    Article  PubMed  CAS  Google Scholar 

  12. Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45: 525–38

    Article  PubMed  CAS  Google Scholar 

  13. Ieiri I, Tainaka H, Morita T, et al. Catalytic activity of three variants (Ile, Leu, and Thr) at amino acid residue 359 in human CYP2C9 gene and simultaneous detection using single-strand conformation polymorphism analysis. Ther Drug Monit 2000; 22: 237–44

    Article  PubMed  CAS  Google Scholar 

  14. Sullivan-Klose TH, Ghanayem BI, Bell DA, et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 1996; 6: 341–9

    Article  PubMed  CAS  Google Scholar 

  15. Stubbins MJ, Harries LW, Smith G, et al. Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics 1996; 6: 429–39

    Article  PubMed  CAS  Google Scholar 

  16. Yasar U, Eliasson E, Dahl ML, et al. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 1999; 254: 628–31

    Article  PubMed  CAS  Google Scholar 

  17. Williams PA, Cosme J, Ward A, et al. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 2003; 424: 464–8

    Article  PubMed  CAS  Google Scholar 

  18. Steward DJ, Haining RL, Henne KR, et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 1997; 7: 361–7

    Article  PubMed  CAS  Google Scholar 

  19. Kidd RS, Straughn AB, Meyer MC, et al. Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics 1999; 9: 71–80

    Article  PubMed  CAS  Google Scholar 

  20. Kirchheiner J, Bauer S, Meineke I, et al. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and on the insulin and glucose response in healthy volunteers. Pharmacogenetics 2002; 12: 101–9

    Article  PubMed  CAS  Google Scholar 

  21. Bahadur N, Leathart JB, Mutch E, et al. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6α-hydroxylase activity in human liver microsomes. Biochem Pharmacol 2002; 64: 1579–89

    Article  PubMed  CAS  Google Scholar 

  22. Yasar U, Lundgren S, Eliasson E, et al. Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms. Biochem Biophys Res Commun 2002; 299: 25–8

    Article  PubMed  CAS  Google Scholar 

  23. Xie HG, Prasad HC, Kim RB, et al. CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 2002; 54: 1257–70

    Article  PubMed  CAS  Google Scholar 

  24. Crespi CL, Miller VP. The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH: cytochrome P450 oxidoreductase. Pharmacogenetics 1997; 7: 203–10

    Article  PubMed  CAS  Google Scholar 

  25. Furuya H, Fernandez Salguero P, Gregory W, et al. Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics 1995; 5: 389–92

    Article  PubMed  CAS  Google Scholar 

  26. Shon JH, Yoon YR, Kim KA, et al. Effects of CYP2C19 and CYP2C9 genetic polymorphisms on the disposition of and blood glucose lowering response to tolbutamide in humans. Pharmacogenetics 2002; 12: 111–9

    Article  PubMed  CAS  Google Scholar 

  27. Bidstrup TB, Bjornsdottir I, Sidelmann UG, et al. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br J Clin Pharmacol 2003; 56: 305–14

    Article  PubMed  CAS  Google Scholar 

  28. Wang JS, Neuvonen M, Wen X, et al. Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug Metab Dispos 2002; 30: 1352–6

    Article  PubMed  Google Scholar 

  29. Soyama A, Hanioka N, Saito Y, et al. Amiodarone N-deethylation by CYP2C8 and its variants, CYP2C8*3 and CYP2C8 P404A. Pharmacol Toxicol 2002; 91: 174–8

    Article  PubMed  CAS  Google Scholar 

  30. Dai D, Zeldin DC, Blaisdell JA, et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 2001; 11: 597–607

    Article  PubMed  CAS  Google Scholar 

  31. Lee CR, Pieper JA, Hinderliter AL, et al. Evaluation of cytochrome P4502C9 metabolic activity with tolbutamide in CYP2C91 heterozygotes. Clin Pharmacol Ther 2002; 72: 562–71

    Article  PubMed  CAS  Google Scholar 

  32. Ferner RE, Chaplin S. The relationship between the pharmacokinetics and pharmacodynamic effects of oral hy-poglycaemic drugs. Clin Pharmacokinet 1987; 12: 379–401

    Article  PubMed  CAS  Google Scholar 

  33. Tolbutamide (Rastinon®) prescribing information. Frankfurt: Hoechst AG, 2001

  34. Niemi M, Cascorbi I, Timm R, et al. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther 2002; 72: 326–32

    Article  PubMed  CAS  Google Scholar 

  35. Badian MKA, Lehr KH, Malercyk V, et al. Pharmakokinetik und Pharmakodynamik nach intravenöser Verabreichung des Hydroxymetaboliten (M1) von Glimepirid (HQE 490). Naunyn Schmiedebergs Arch Pharmacol 1993; 347 Suppl.: R27

    Google Scholar 

  36. Glimepride (Amaryl®) prescribing information. Bridgewater (MA): Aventis Pharmaceuticals Inc., 2001

  37. Glibenclamide (Euglucon®) prescribing information. Frankfurt: Hoechst AG, 2001

  38. Gliclazide (Diamicron®) prescribing information. Munich: Servier GmbH, 2001

  39. Weaver ML, Orwig BA, Rodriguez LC, et al. Pharmacokinetics and metabolism of nateglinide in humans. Drug Metab Dispos 2001; 29: 415–21

    PubMed  CAS  Google Scholar 

  40. McLeod J. Clinical pharmacokinetics of nateglinide. Clin Pharmacokinet 2004; 43: 97–120

    Article  PubMed  CAS  Google Scholar 

  41. Hatorp V. Clinical pharmacokinetics and pharmacodynamics of repaglinide. Clin Pharmacokinet 2002; 41: 471–83

    Article  PubMed  CAS  Google Scholar 

  42. Budde K, Neumayer HH, Fritsche L, et al. The pharmacokinetics of pioglitazone in patients with impaired renal function. Br J Clin Pharmacol 2003; 55: 368–74

    Article  PubMed  CAS  Google Scholar 

  43. Pioglitazone (Actos®) prescribing information. Osaka: Takeda Pharma, 2001

  44. Chapelsky MC, Thompson-Culkin K, Miller AK, et al. Pharmacokinetics of rosiglitazone in patients with varying degrees of renal insufficiency. J Clin Pharmacol 2003; 43: 252–9

    Article  PubMed  CAS  Google Scholar 

  45. Rosiglitazone (Avandia®) prescribing information. Research Triangle Park (NC): GlaxoSmithKline, 2001

  46. Metformin (Glucophage®) prescribing information. Princeton (NJ): Bristol-Myers Squibb Company, 2004

  47. De Fronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999; 131: 281–303

    Google Scholar 

  48. Thomas RC, Ikeda GJ. The metabolic fate of tolbutamide in man and in the rat. J Med Chem 1966; 9: 507–10

    Article  PubMed  CAS  Google Scholar 

  49. Miners JO, Birkett DJ. Use of tolbutamide as a substrate probe for human hepatic cytochrome P450 2C9. Methods Enzymol 1996; 272: 139–45

    Article  PubMed  CAS  Google Scholar 

  50. Veronese ME, Miners JO, Randies D, et al. Validation of the tolbutamide metabolic ratio for population screening with use of sulfaphenazole to produce model phenotypic poor metabolizers. Clin Pharmacol Ther 1990; 47: 403–11

    Article  PubMed  CAS  Google Scholar 

  51. Scott J, Poffenbarger PL. Pharmacogenetics of tolbutamide metabolism in humans. Diabetes 1979; 28: 41–51

    Article  PubMed  CAS  Google Scholar 

  52. Page MA, Boutagy JS, Shenfield GM. A screening test for slow metabolisers of tolbutamide. Br J Clin Pharmacol 1991; 31: 649–54

    Article  PubMed  CAS  Google Scholar 

  53. Peart GF, Boutagy J, Shenfield GM. Lack of relationship between tolbutamide metabolism and debrisoquine oxidation phenotype. Eur J Clin Pharmacol 1987; 33: 397–402

    Article  PubMed  CAS  Google Scholar 

  54. Miners JO, Wing LM, Birkett DJ. Normal metabolism of debrisoquine and theophylline in a slow tolbutamide metaboliser. Aust N Z J Med 1985; 15: 348–9

    Article  PubMed  CAS  Google Scholar 

  55. Veronese ME, Miners JO, Rees DL, et al. Tolbutamide hydroxylation in humans: lack of bimodality in 106 healthy subjects. Pharmacogenetics 1993; 3: 86–93

    Article  PubMed  CAS  Google Scholar 

  56. Jackson JE, Bressier R. Clinical pharmacology of sulphonylurea hypoglycaemic agents: part 1. Drugs 1981; 22: 211–45

    Article  PubMed  CAS  Google Scholar 

  57. Relling MV, Aoyama T, Gonzalez FJ, et al. Tolbutamide and mephenytoin hydroxylation by human cytochrome P450s in the CYP2C subfamily. J Pharmacol Exp Ther 1990; 252: 442–7

    PubMed  CAS  Google Scholar 

  58. Veronese ME, Mackenzie PI, Doecke CJ, et al. Tolbutamide and Phenytoin hydroxylations by cDNA-expressed human liver cytochrome P4502C9 [published erratum appears in Biochem Biophys Res Commun 1991 Nov 14; 180 (3); 1527]. Biochem Biophys Res Commun 1991; 175: 1112–8

    Article  PubMed  CAS  Google Scholar 

  59. Srivastava PK, Yun CH, Beaune PH, et al. Separation of human liver microsomal tolbutamide hydroxylase and (S)-mephenytoin 4′-hydroxylase cytochrome P-450 enzymes. Mol Pharmacol 1991; 40: 69–79

    PubMed  CAS  Google Scholar 

  60. Wester MR, Lasker JM, Johnson EF, et al. CYP2C19 participates in tolbutamide hydroxylation by human liver microsomes. Drug Metab Dispos 2000; 28: 354–9

    PubMed  CAS  Google Scholar 

  61. Knodell RG, Hall SD, Wilkinson GR, et al. Hepatic metabolism of tolbutamide: characterization of the form of cytochrome P-450 involved in methyl hydroxylation and relationship to in vivo disposition. J Pharmacol Exp Ther 1987; 241: 1112–9

    PubMed  CAS  Google Scholar 

  62. Jetter A, Kinzig-Schippers M, Skott A, et al. Cytochrome P(450) 2C9 phenotyping using low-dose tolbutamide. Eur J Clin Pharmacol 2004; 60: 165–71

    Article  PubMed  CAS  Google Scholar 

  63. Yuan R, Madani S, Wei XX, et al. Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab Dispos 2002; 30: 1311–9

    Article  PubMed  CAS  Google Scholar 

  64. Rupp W, Christ O, Fulberth W. Studies on the bioavailability of glibenclamide [in German]. Arzneimittelforschung 1972; 22: 471–3

    PubMed  CAS  Google Scholar 

  65. Rydberg T, Jonsson A, Roder M, et al. Hypoglycemic activity of glyburide (glibenclamide) metabolites in humans. Diabetes Care 1994; 17: 1026–30

    Article  PubMed  CAS  Google Scholar 

  66. Jonsson A, Hallengren B, Rydberg T, et al. Effects and serum levels of glibenclamide and its active metabolites in patients with type 2 diabetes. Diabetes Obes Metab 2001; 3: 403–9

    Article  PubMed  CAS  Google Scholar 

  67. Jonsson A, Rydberg T, Ekberg G, et al. Slow elimination of glyburide in NIDDM subjects. Diabetes Care 1994; 17: 142–5

    Article  PubMed  CAS  Google Scholar 

  68. Melander A, Lebovitz HE, Faber OK. Sulfonylureas: why, which, and how?. Diabetes Care 1990; 13 Suppl. 3: 18–25

    PubMed  Google Scholar 

  69. Dahl-Puustinen ML, Alm C, Bertilsson L, et al. Lack of relationship between glibenclamide metabolism and debrisoquine or mephenytoin hydroxylation phenotypes. Br J Clin Pharmacol 1990; 30: 476–80

    Article  PubMed  CAS  Google Scholar 

  70. Kirchheiner J, Brockmöller J, Meineke I, et al. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin Pharmacol Ther 2002; 71: 286–96

    Article  PubMed  CAS  Google Scholar 

  71. Holstein AP, Ptak A, Egberts M, et al. Association between CYP2C9 slow metabolizer genotypes and severe hypoglycemia in medication with sulfonylurea antidiabetics. Br J Clin Pharmacol 2005; 60: 103–6

    Article  PubMed  CAS  Google Scholar 

  72. Asplund Wiholm BE, Lithner F. Glibenclamide-associated hypoglycaemia: a report on 57 cases. Diabetologia 1983; 24: 412–7

    Google Scholar 

  73. Axelgaard G, Skensved H, Asfeldt VH. Hypoglycemia during treatment with sulfonylurea preparations [in Danish]. Ugeskr Laeger 1986; 148: 2155–8

    PubMed  CAS  Google Scholar 

  74. Berger W, Caduff F, Pasquel M, et al. The relatively frequent incidence of severe sulfonylurea-induced hypoglycemia in the last 25 years in Switzerland: results of 2 surveys in Switzerland in 1969 and 1984 [in German]. Schweiz Med Wochenschr 1986; 116: 145–51

    PubMed  CAS  Google Scholar 

  75. Holstein A, Egberts EH. Risk of hypoglycaemia with oral antidiabetic agents in patients with type 2 diabetes. Exp Clin Endocrinol Diabetes 2003; 111: 405–14

    Article  PubMed  CAS  Google Scholar 

  76. Wahlin-Boll E, Aimer LO, Melander A. Bioavailability, pharmacokinetics and effects of glipizide in type 2 diabetics. Clin Pharmacokinet 1982; 7: 363–72

    Article  PubMed  CAS  Google Scholar 

  77. Chung M, Kourides I, Canovatchel W, et al. Pharmacokinetics and pharmacodynamics of extended-release glipizide GITS compared with immediate-release glipizide in patients with type II diabetes mellitus. J Clin Pharmacol 2002; 42: 651–7

    Article  PubMed  CAS  Google Scholar 

  78. Fuccella LM, Tamassia V, Valzelli G. Metabolism and kinetics of the hypoglycemic agent glipizide in man: comparison with glibenclamide. J Clin Pharmacol New Drugs 1973; 13: 68–75

    PubMed  CAS  Google Scholar 

  79. Kidd RS, Curry TB, Gallagher S, et al. Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to Phenytoin. Pharmacogenetics 2001; 11: 803–8

    Article  PubMed  CAS  Google Scholar 

  80. Rosenkranz Pharmacokinetic basis for the safety of glimepiride in risk groups of NIDDM patients. Horm Metab Res 1996; 28: 434-9

  81. Wang R, Chen K, Wen S-Y, et al. Pharmacokinetics of glimepiride and cytochrome P450 2C9 genetic polymorphisms. Clin Pharmacol Ther 2005 Jul; 78_(1): 90–2

    Article  CAS  Google Scholar 

  82. Palmer KJ, Brogden RN. Gliclazide: an update of its pharmacological properties and therapeutic efficacy in non-insulin-dependent diabetes mellitus. Drugs 1993; 46: 92–125

    Article  PubMed  CAS  Google Scholar 

  83. Rieutord A, Stupans I, Shenfield GM, et al. Gliclazide hydroxyl-ation by rat liver microsomes. Xenobiotica 1995; 25: 1345–54

    Article  PubMed  CAS  Google Scholar 

  84. Huupponen R, Viikari J, Saarimaa H. Chlorpropamide and glibenclamide serum concentrations in hospitalized patients. Ann Clin Res 1982; 14: 119–22

    PubMed  CAS  Google Scholar 

  85. Neuvonen PJ, Karkkainen S, Lehtovaara R. Pharmacokinetics of chlorpropamide in epileptic patients: effects of enzyme induction and urine pH on chlorpropamide elimination. Eur J Clin Pharmacol 1987; 32: 297–301

    Article  PubMed  CAS  Google Scholar 

  86. Yoon YR, Shon JH, Kim KA, et al. Pharmacokinetics and pharmacodynamics of tolbutamide and chlorpropamide in relation to CYP2C9 and CYP2C19 [poster]. Clin Pharmacol Ther 2000; 67: 152

    Article  Google Scholar 

  87. Galloway JA, McMahon RE, Culp HW, et al. Metabolism, blood levels and rate of excretion of acetohexamide in human subjects. Diabetes 1967; 16: 118–27

    PubMed  CAS  Google Scholar 

  88. Fujitani S, Yada T. A novel D-phenylalanine-derivative hypoglycemic agent A-4166 increases cytosolic free Ca2+ in rat pancreatic beta-cells by stimulating Ca2+ influx. Endocrinology 1994; 134: 1395–400

    Article  PubMed  CAS  Google Scholar 

  89. Akiyoshi M, Kakei M, Nakazaki M, et al. A new hypoglycemic agent, A-4166, inhibits ATP-sensitive potassium channels in rat pancreatic beta-cells. Am J Physiol 1995; 268: E185–93

    PubMed  CAS  Google Scholar 

  90. Marre M, Van Gaal L, Usadel KH, et al. Nateglinide improves glycaemic control when added to metformin monotherapy: results of a randomized trial with type 2 diabetes patients. Diabetes Obes Metab 2002; 4: 177–86

    Article  PubMed  CAS  Google Scholar 

  91. Kalbag JB, Walter YH, Nedelman JR, et al. Mealtime glucose regulation with nateglinide in healthy volunteers: comparison with repaglinide and placebo. Diabetes Care 2001; 24: 73–7

    Article  PubMed  CAS  Google Scholar 

  92. Takesada H, Matsuda K, Ohtake R, et al. Structure determination of metabolites isolated from urine and bile after administration of AY4166, a novel D-phenylalanine-derivative hypoglycemic agent. Bioorg Med Chem 1996; 4: 1771–81

    Article  PubMed  CAS  Google Scholar 

  93. Cao G, Song Y. Pharmacokinetics of enantiomers of a new antidiabetic agent (AY4166) in healthy subjects and its metabolism using isolated rats hepatocytes. Clin Pharmacol Ther 2002; 71: P 100

    Google Scholar 

  94. Hatorp V, Walther KH, Christensen MS, et al. Single-dose pharmacokinetics of repaglinide in subjects with chronic liver disease. J Clin Pharmacol 2000; 40: 142–52

    Article  PubMed  CAS  Google Scholar 

  95. Kirchheiner J, Meineke I, Muller G, et al. Influence of CYP2C9 and CYP2D6 polymorphisms on the pharmacokinetics of nateglinide in genotyped healthy volunteers. Clin Pharmacokinet 2004; 43(4): 267–78

    Article  PubMed  CAS  Google Scholar 

  96. Niemi M, Leathart JB, Neuvonen M, et al. Polymorphism in CYP2C8 is associated with reduced plasma concentrations of repaglinide. Clin Pharmacol Ther 2003; 74: 380–7

    Article  PubMed  CAS  Google Scholar 

  97. Niemi M, Neuvonen PJ, Kivisto KT. The cytochrome P4503A4 inhibitor clarithromycin increases the plasma concentrations and effects of repaglinide. Clin Pharmacol Ther 2001; 70: 58–65

    Article  PubMed  CAS  Google Scholar 

  98. Niemi M, Backman JT, Neuvonen M, et al. Effects of rifampin on the pharmacokinetics and pharmacodynamics of glyburide and glipizide. Clin Pharmacol Ther 2001; 69: 400–6

    Article  PubMed  CAS  Google Scholar 

  99. Yamazaki H, Shibata A, Suzuki M, et al. Oxidation of troglitazone to a quinone-type metabolite catalyzed by cytochrome P-450 2C8 and P-450 3A4 in human liver microsomes. Drug Metab Dispos 1999; 27: 1260–6

    PubMed  CAS  Google Scholar 

  100. Hewitt NJ, Lloyd S, Hayden M, et al. Correlation between troglitazone cytotoxicity and drug metabolic enzyme activities in cryopreserved human hepatocytes. Chem Biol Interact 2002; 142: 73–82

    Article  PubMed  CAS  Google Scholar 

  101. Kassahun K, Pearson PG, Tang W, et al. Studies on the metabolism of troglitazone to reactive intermediates in vitro and in vivo: evidence for novel biotransformation pathways involving quinone methide formation and thiazolidinedione ring scission. Chem Res Toxicol 2001; 14: 62–70

    Article  PubMed  CAS  Google Scholar 

  102. Kumashiro R, Kubota T, Koga Y, et al. Association of troglitazone-induced liver injury with mutation of the cytochrome P450 2C19 gene. Hepatol Res 2003; 26: 337–42

    Article  PubMed  CAS  Google Scholar 

  103. Baldwin SJ, Clarke SE, Chenery RJ. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone. Br J Clin Pharmacol 1999; 48: 424–32

    Article  PubMed  CAS  Google Scholar 

  104. Nowak SN, Edwards DJ, Clarke A, et al. Pioglitazone. J Clin Pharmacol 2002; 42: 1299–302

    Article  PubMed  CAS  Google Scholar 

  105. Hanefeld M. Pharmacokinetics and clinical efficacy of pioglitazone. Int J Clin Pract Suppl 2001; (121): 19–25

    PubMed  CAS  Google Scholar 

  106. Scheen AJ, Hanefeld M. Hepatotoxicity with thiazolidinediones: is it a class effect?. Drug Saf 2001; 24: 873–88

    Article  PubMed  CAS  Google Scholar 

  107. Wahlin-Boll E, Sartor G, Melander A, et al. Impaired effect of sulfonylurea following increased dosage. Eur J Clin Pharmacol 1982; 22: 21–5

    Article  PubMed  CAS  Google Scholar 

  108. American Association of Diabetes Educators. Intensive diabetes management: implications of the DCCT and UKPDS. Diabetes Educ 2002; 28: 735–40

    Article  Google Scholar 

  109. Brockmöller J, Kirchheiner J, Meisel C, et al. Pharmacogenetic diagnostics of cytochrome P450 polymorphisms in clinical drug development and in drug treatment. Pharmacogenomics 2000; 1: 125–51

    Article  PubMed  Google Scholar 

  110. Kirchheiner J, Brøsen K, Dahl ML, et al. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104: 173–92

    Article  PubMed  CAS  Google Scholar 

  111. Mudaliar S, Chang AR, Henry RR. Thiazolidinediones, peripheral edema, and type 2 diabetes: incidence, pathophysiology, and clinical implications. Endocr Pract 2003; 9: 406–16

    PubMed  Google Scholar 

  112. Takeda M, Khamdang S, Narikawa S, et al. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther 2002; 300: 918–24

    Article  PubMed  CAS  Google Scholar 

  113. Kerb R, Brinkmann U, Chatskaia N, et al. Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenetics 2002; 12: 591–5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was given by the German Ministry of Education and Research (GG 9845/5 and 03/4507) and by the German Research Foundation (KI 842/5-1). The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kirchheiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchheiner, J., Roots, I., Goldammer, M. et al. Effect of Genetic Polymorphisms in Cytochrome P450 (CYP) 2C9 and CYP2C8 on the Pharmacokinetics of Oral Antidiabetic Drugs. Clin Pharmacokinet 44, 1209–1225 (2005). https://doi.org/10.2165/00003088-200544120-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544120-00002

Keywords

Navigation