Skip to main content
Log in

Pharmacokinetic and Pharmacodynamic Considerations in the Development of Therapeutic Proteins

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

With an increasing number of therapeutic proteins moving into preclinical and clinical development, pharmacokinetic factors play an important role in the development of these macromolecules. It is also important that the pharmacokinetic evaluation of these compounds be done as accurately as possible. For macromolecules, evaluation of pharmacokinetic parameters is often complicated by a number of factors. Bioanalytical methods are essential for any pharmacokinetic study, but for many therapeutic proteins the immunoassay and bioassay methodologies are often nonspecific and sometimes the estimation of pharmacokinetic parameters becomes assay dependent. In vivo binding proteins, metabolites and antibody formation may also interfere with bioanalytical methodologies and thus may have significant impact on the pharmacokinetics of therapeutic proteins. There are also difficulties in identifying and quantifying metabolites as well as the binding of therapeutic proteins to endogenous proteins. Some macromolecules exhibit species specificity that complicates the preclinical pharmacological and toxicological evaluation of these compounds. Antibody formation is a particular problem in the preclinical evaluation of therapeutic proteins. Changes in structure or sequence of protein molecules (glycosylation or pegylation) may cause changes in the pharmacokinetics of these compounds. The size of therapeutic proteins may become a hindrance for absorption. Low absorption of intact molecules across biological membranes frequently occurs. Other factors that may affect the pharmacokinetics of a therapeutic protein are immunogenicity, presence of endogenous protein, time of drug administration, and rate and site of drug delivery. The relationship between pharmacokinetics and pharmacodynamics of therapeutic proteins is complex and in most cases is unclear. In many cases the mechanism and site of action are unknown for these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Marderosian AHD, Kroll DJ. Biotechnology and drugs. In: Gennaro AR, editor. Remington: the science and practice of pharmacy. 20th ed. Baltimore (PA): Lippincott Williams and Wilkins, 2000: 944–62

    Google Scholar 

  2. Braeckman R. Pharmacokinetics and pharmacodynamics of protein therapeutics. In: Reid ER, editor. Peptides and protein drug analysis. New York: Marcel Dekker Inc., 2000: 633–69

    Google Scholar 

  3. Rodwell VW. Proteins: structure and function. In: Murray RK, Granner DK, Mayes PA, et al., editors. Harper’s biochemistry. 23rd ed. Norwalk (CT): Appleton and Lange, 1993: 41–8

    Google Scholar 

  4. Kozlowski A, Charles SA, Harris JM. Development of pegylated interferons for the treatment of chronic hepatitis C. BioDrugs 2001; 15: 419–29

    Article  PubMed  CAS  Google Scholar 

  5. Drickamer K, Taylor ME. Evolving views of protein glycosylation. Trends Biochem Sci 1998; 23: 321–4

    Article  PubMed  CAS  Google Scholar 

  6. Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weight after intravenous administration to mice. J Pharm Sci 1994; 83: 601–6

    Article  PubMed  CAS  Google Scholar 

  7. Yoshimaga Y, Harris JM. Effects of coupling chemistry on activity of polyethylene glycol-mediated enzyme. J Bioact Compat Polyn 1989; 4: 17–24

    Article  Google Scholar 

  8. Chen SA, Sawchuk RJ, Brundage RC, et al. Plasma and lymph pharmacokinetics of recombinant human interleukin-2 and polyethylene glycol-modified interleukin-2 in pigs. J Pharmacol Exp Ther 2000; 293: 248–59

    PubMed  CAS  Google Scholar 

  9. Drickamer K, Taylor ME. Evolving views of protein glycosylation. Trends Biochem Sci 1998; 23: 321–4

    Article  PubMed  CAS  Google Scholar 

  10. Jaeken J, Metthijs G. Congenital disorders of glycosylation. Annu Rev Genomics Hum Genet 2001; 2: 129–51

    Article  PubMed  CAS  Google Scholar 

  11. Steen PVD, Rudd PM, Dwek RA, et al. Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 1999; 33: 151–208

    Article  Google Scholar 

  12. Martin-Rendon E, Blake DJ. Protein glycosylation in disease: new insights into the congenital muscular dystrophies. Trends Pharmacol Sci 2003; 24: 178–83

    Article  PubMed  CAS  Google Scholar 

  13. Hovgaard D, Mortensen BT, Schifter S, et al. Comparative pharmacokinetics of single-dose administration of mammalian and bacterially-derived recombinant human granulocyte-macrophage colony-stimulating factor. Eur J Haematol 1993; 50: 32–6

    Article  PubMed  CAS  Google Scholar 

  14. Buckel P. Recombinant proteins for therapy. Trends Pharmacol Sci 1996; 17: 450–6

    Article  PubMed  CAS  Google Scholar 

  15. Toon S. The relevance of pharmacokinetics in the development of biotechnology products. Eur J Drug Metab Pharmacokinet 1996; 21: 93–103

    Article  PubMed  CAS  Google Scholar 

  16. Ferraiolo BL, Mohler MA. Goals and analytical methodologies for protein disposition studies. In: Ferraiolo BL, Mohler MA, Gloff CA, editors. Protein pharmacokinetics and metabolism. New York: Plenum Press, 1992: 1–21

    Google Scholar 

  17. Lee JW, Colburn WA. Immunoassay techniques. In: Ohannesian L, Streeter AJ, editors. Handbook of pharmaceutical analysis. New York: Marcel Dekker Inc., 2002: 225–312

    Google Scholar 

  18. Randall CS, Malefyt TR, Sternson LA. Approaches to the analysis of peptides. In: Lee VHL, editor. Peptide and protein drug delivery. New York: Marcel Dekker Inc., 1991: 203–46

    Google Scholar 

  19. la Cotonnec JY, Porchet HC, Beltrami V, et al. Clinical pharmacology of recombinant human follicle-stimulating hormone (FSH): I. Comparative pharmacokinetics with urinary human FSH. Fertil Steril 1994; 61: 669–78

    PubMed  Google Scholar 

  20. Wills RJ, Dennis S, Spiegel HE, et al. Interferon kinetics and adverse reactions after intravenous, intramuscular, and subcutaneous injection. Clin Pharm Ther 1984; 35: 722–7

    Article  CAS  Google Scholar 

  21. Ferraiolo BL, Fuller GB, Burnett B, et al. Pharmacokinetics of recombinant human interferon-gamma in the rhesus monkey after intravenous and subcutaneous administration. J Biol Response Mod 1988; 7: 115–22

    PubMed  CAS  Google Scholar 

  22. Kurzrock R, Rosenblum MG, Sherwin SA, et al. Pharmacokinetics, single-dose tolerance, and biological activity of recombinant gamma-interferon in Cancer patients. Cancer Res 1985; 45: 2866–72

    PubMed  CAS  Google Scholar 

  23. Radwanski E, Perentesis G, Jacobs S, et al. Pharmacokinetics of interferon α-2b in healthy volunteers. J Clin Pharmacol 1987; 27: 432–5

    PubMed  CAS  Google Scholar 

  24. Supersaxo A, Hein WR, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 1990; 2: 167–9

    Article  Google Scholar 

  25. Supersaxo A, Hein W, Gallati H, et al. Recombinant human interferon alpha-2a: delivery to lymphoid tissue by selected modes of application. Pharm Res 1988; 8: 472–6

    Article  Google Scholar 

  26. Jones JM, Macdougall IC, Robinson MI, et al. Subcutaneous recombinant erythropoietin therapy: comparison of 3 different sites of injection. J Am Soc Nephrol 1990; 1: 400

    Google Scholar 

  27. Laursen T, Jorgensen JO, Christiansen JS. Pharmacokinetics and metabolic effects of growth hormone injected subcutaneously in growth hormone deficient patients: thigh versus abdomen. Clin Endocrinol (Oxf) 1994; 40: 373–8

    Article  CAS  Google Scholar 

  28. Mohler MA, Cook JE, Baumann G. Binding proteins of protein therapeutics. In: Ferraiolo BL, Mohler MA, Gloff CA, editors. Protein pharmacokinetics and metabolism. New York: Plenum Press, 1992: 35–71

    Google Scholar 

  29. Baumann G, Amburn K, Shaw MA. The circulating growth hormone (GH)-binding protein complex: a major constituent of plasma GH in man. Endocrinology 1988; 122: 976–84

    Article  PubMed  CAS  Google Scholar 

  30. Havredaki M, Barona F. Variations in interferon inactivators and/or inhibitors in human serum and their relationship to interferon therapy. Jpn J Med Sci Biol 1985; 38: 107–11

    PubMed  CAS  Google Scholar 

  31. Femandez-Botran R, Vitetta ES. A soluble, high-affinity, interleukin-4-binding protein is present in the biological fluids of mice. Proc Natl Acad Sci U S A 1990; 87: 4202–6

    Article  Google Scholar 

  32. Lelchuk R, Playfair JHL. Serum IL-2 inhibitor in mice: I. Increase during infection. Immunology 1985; 56: 113–8

    PubMed  CAS  Google Scholar 

  33. Malik S, Lantz M, Slevin M, et al. Infusion of recombinant human tumour necrosis factor (rhTNF) causes an increase in circulating TNF-binding protein in man [abstract]. Int J Exp Pathol 1991; 72: A6

    Google Scholar 

  34. Garzone PD. Pharmacokinetic and pharmacodynamic considerations in the development of biotechnology products and large molecules. In: Atkinson AJ, Daniels CE, Dedrick RL, et al., editors. Principles of clinical pharmacology. San Diego (CA): Academic Press, 2001: 401–18

    Google Scholar 

  35. Abdel-Razzak Z, Loyer P, Fautrel A, et al. Cytokines downregulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol Pharmacol 1993; 44: 707–15

    PubMed  CAS  Google Scholar 

  36. Kompella A, Lee VHL. Pharmacokinetics of peptide and protein drugs. In: Lee VHL, editor. Peptide and protein drug delivery. New York: Marcel Dekker Inc., 1991: 391–484

    Google Scholar 

  37. Takakura Y, Fujita T, Hashida M, et al. Disposition characteristics of macromolecules in tumor-bearing mice. Pharm Res 1990; 7: 339–46

    Article  PubMed  CAS  Google Scholar 

  38. Maack T, Johnson V, Kau ST, et al. Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 1979; 16: 251–70

    Article  PubMed  CAS  Google Scholar 

  39. Bocci V. Catabolism of therapeutic proteins and peptides with implications for drug delivery. Adv Drug Deliv Rev 1990; 4: 149–69

    Article  CAS  Google Scholar 

  40. Maack T. Renal handling of low molecular weight proteins. Am J Med 1975; 58: 57–64

    Article  PubMed  CAS  Google Scholar 

  41. Ganapathy V, Leibach FH. Carrier-mediated reabsorption of small peptides in renal proximal tubule. Am J Physiol 1986; 251(6 Pt 2): F945–53

    PubMed  CAS  Google Scholar 

  42. Van Griensven JM, Burggraaf KJ, Gerloff J, et al. Effects of changing liver blood flow by exercise and food on kinetics and dynamics of saruplase. Clin Pharmacol Ther 1995; 57: 381–9

    Article  PubMed  Google Scholar 

  43. Van Griensven JM, Huisman LG, Stuurman T, et al. Effects of increased liver blood flow on the kinetics and dynamics of recombinant tissue-type Plasminogen activator. Clin Pharmacol Ther 1996; 60: 504–11

    Article  PubMed  Google Scholar 

  44. Kuwabara T, Uchimura T, Takai K, et al. Saturable uptake of a recombinant human granulocyte colony-stimulating factor derivative, nartograstim, by the bone marrow and spleen of rats in vivo. J Pharmacol Exp Ther 1995; 273: 1114–22

    PubMed  CAS  Google Scholar 

  45. Preusch PC. Equilibrative and concentrative drug transport mechanisms. In: Atkinson AJ, Daniels CE, Dedrick RL, et al., editors. Principles of clinical pharmacology. San Diego (CA): Academic Press, 2001: 201–22

    Google Scholar 

  46. LaRusso NF. Proteins in bile: how they get there and what they do. Am J Physiol 1984; 247(3 Pt 1): G199–205

    PubMed  CAS  Google Scholar 

  47. Kaplan SL, August GP, Blethen SL, et al. Clinical studies of recombinant-DNA-derived methionyl human growth hormone in growth hormone deficient children. Lancet 1986; I: 697–700

    Article  Google Scholar 

  48. Spiegel RJ, Spicehandler JR, Jacobs SL, et al. Low incidence of neutralizing factors in patients receiving recombinant-alpha-2b-interferon (Intron-A). Am J Med 1986; 80: 223–8

    Article  PubMed  CAS  Google Scholar 

  49. Fineberg S, Galloway J, Fineberg N, et al. Immunogenicity of recombinant DNA human insulin. Diabetologia 1983; 25: 465–9

    Article  PubMed  CAS  Google Scholar 

  50. Krigel RL, Padavic-Shaller KA, Rudolph AR, et al. A phase I study of recombinant interleukin-2 plus recombinant betainterferon. Cancer Res 1988; 48: 3875–81

    PubMed  CAS  Google Scholar 

  51. Konrad M, Childs A, Merigan T, et al. Assessment of the antigenic response in humans to a recombinant interferon beta. J Clin Immunol 1987; 7: 365–75

    Article  PubMed  CAS  Google Scholar 

  52. Working PK. Potential effects of antibody induction by protein drugs. In: Ferraiolo BL, Mohler MA, Gloff CA, editors. Protein pharmacokinetics and metabolism. New York: Plenum Press, 1992: 73–92

    Google Scholar 

  53. Itri LM, Sherman MI, Paleroni A, et al. Incidence and clinical significance of neutralizing antibodies in patients receiving recombinant interferon-alpha-2. J Interferon Res 1989; 9 Suppi. 1: S9–15

    PubMed  Google Scholar 

  54. Marafino BJ, Kopplin JR. Chracterization of the toxicity profile. In: VHL Lee, editor. Peptide and protein drug delivery. New York: Marcel Dekker Inc., 1991: 807–29

    Google Scholar 

  55. Davis FF, Kazo GM, Nucci ML, Abuchowski A. Reduction of immunogenicity and extension of circulating half-life of peptides and proteins. In: VHL Lee, editor. Peptide and protein drug delivery. New York: Marcel Dekker Inc., 1991: 831–64

    Google Scholar 

  56. Queseda JR, Gutterman JU. Clinical study of recombinant DNA-produced leukocyte interferon (clone A) in an intermittent schedule in cancer patients. J Natl Cancer Inst 1983; 70: 1041–6

    Google Scholar 

  57. Queseda JR, Rios A, Swanson D, et al. Antitumor activity of recombinant-derived interferon alpha in metastatic renal carcinoma. J Clin Oncol 1985; 3: 1522–8

    Google Scholar 

  58. Rosenblum MG, Unger BW, Gutterman JU, et al. Modification of human leucocyte interferon pharmacology with monoclonal antibody. Cancer Res 1985; 45: 2421–4

    PubMed  CAS  Google Scholar 

  59. Cheung WK, Goon BL, Guilfoyle MC, et al. Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin after single and multiple subcutaneous doses to healthy subjects. Clin Pharmacol Ther 1999; 64: 412–23

    Article  Google Scholar 

  60. Waldhausal WK, Bratusch-Marrain PR, Vierhapper H, et al. Insulin pharmacokinetics following continuous infusion and bolus injection of regular porcine and human insulin in healthy man. Metabolism 1983; 32: 478–86

    Article  Google Scholar 

  61. Hindmarsh PC, Matthews OR, Brain CE, et al. The half-life of exogenous growth hormone after suppression of endogenous growth hormone secretion with somatostatin. Clin Endocrinol 1989; 30: 443–50

    Article  CAS  Google Scholar 

  62. Van Cauter E, Refetoff S. Multifactorial control of the 24-hour secretory profiles of pituitary hormones. J Endocrinol Invest 1985; 8: 381–91

    PubMed  Google Scholar 

  63. Baxter RC, Cowell CT. Diurnal rhythm of growth hormoneindependent binding protein for insulin-like growth factors in human plasma. J Clin Endocrinol Metab 1987; 65: 432–40

    Article  PubMed  CAS  Google Scholar 

  64. Dominguez Rodriguez A, Abreu Gonzalez P, Garcia MJ, et al. Circadian variations in proinflammatory cytokine concentrations in acute myocardial infarction. Rev Esp Cardiol 2003; 56: 555–60

    Article  PubMed  Google Scholar 

  65. Gavrila A, Peng CK, Chan JL, et al. Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab 2003; 6: 2838–43

    Article  Google Scholar 

  66. Hulse JA, Rosenthal SM, Cutler L, et al. The effect of pulsatile administration, continuous infusion and diurnal variation on the growth hormone response to GH-releasing hormone in normal men. J Clin Endocrinol Metab 1986; 63: 872–8

    Article  PubMed  CAS  Google Scholar 

  67. Tarn CS, Heersche JNM, Murray TM, et al. Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: differential effects of intermittent and continuous administration. Endocrinology 1982; 110: 506–12

    Article  Google Scholar 

  68. Klabunde RE, Burke SE, Henkin J. Enhanced lytic efficacy of multiple bolus injections of tissue Plasminogen activator in dogs. Thromb Res 1990; 58: 511–7

    Article  PubMed  CAS  Google Scholar 

  69. Clark RG, Jansson JO, Isaksson O, et al. Intravenous growth hormone: growth responses to patterned infusions in hypophysectomized rats. J Endocrinol 1985; 104: 53–61

    Article  PubMed  CAS  Google Scholar 

  70. Belchetz PE, Plant TM, Nakai Y, et al. Hypophysial responses to continuous and intermittent delivery of hypophthalamic gonadotropin-releasing hormone. Science 1978; 202: 631–3

    Article  PubMed  CAS  Google Scholar 

  71. Vaage J, Pauly JL, Harlos JP. Influence of the administration schedule on the therapeutic effect of interleukin-2. Int J Cancer 1987; 39: 530–3

    Article  PubMed  CAS  Google Scholar 

  72. Levy G. Kinetics of pharmacologic effects. Clin Pharmacol Ther 1966; 7: 362–72

    PubMed  CAS  Google Scholar 

  73. Wagner JG. Kinetics of pharmacologic response: I. Proposed relationships between response and drug concentration in the intact animal and man. J Theor Biol 1968; 20: 173–201

    Article  PubMed  CAS  Google Scholar 

  74. Childs A, Grovel J, Baron DA, et al. Population PK/PD of tissue factor pathway inhibitor (TFPI) in cynomolgous monkeys during a 12-day toxicology study. Fundam Appl Toxicol 1996; 30 Suppl. 1: 104

    Google Scholar 

  75. Schaub R, Garzone P, Bouchard P, et al. Preclinical studies of recombinant factor IX. Semin Hematol 1999; 35 Suppl. 2: 28–32

    Google Scholar 

  76. Ramakrishnan R, Cheung WK, Farrell F, et al. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous dose administration in cynomolgus monkeys. J Pharmacol Exp Ther 2003; 306: 324–31

    Article  PubMed  CAS  Google Scholar 

  77. Mager DE, Wyska E, Jusko WJ. Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 2003; 31: 510–8

    Article  PubMed  CAS  Google Scholar 

  78. Furchgott RF. The pharmacology of vascular smooth muscle. Pharmacol Rev 1955; 7: 183–265

    PubMed  CAS  Google Scholar 

  79. Hull CJ, Van Beem HB, McLeod K, et al. A pharmacodynamic model for pancuronium. Br J Anaesth 1978; 50: 1113–23

    Article  PubMed  CAS  Google Scholar 

  80. Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 1979; 25: 358–71

    PubMed  CAS  Google Scholar 

  81. Hooper S. Pharmacokinetics and pharmacodynamics of intravenous regular human insulin. In: Garzone PD, Colburn WA, Mokotoff M, editors. Pharmacokinetics and pharmacodynamics: peptides, peptoids, and proteins. Cincinnati (OH): Harvey Whitney Books, 1991: 128–37

    Google Scholar 

  82. Woodworth JR, Howey DC, Bowsher RR. Establishment of time-action profiles for regular and NPH insulin using pharmacodynamic modeling. Diabetes Care 1994; 17: 64–9

    Article  PubMed  CAS  Google Scholar 

  83. Porchet HC, Cotonner J-Y, Loumaye E. Clinical pharmacology of recombinant human follicle-stimulating hormone: III. Pharmacokinetic-pharmacodynamic modeling after repeated subcutaneous administration. Fertil Steril 1994; 61: 687–95

    PubMed  CAS  Google Scholar 

  84. Ariens EJ, editor. Molecular pharmacology: the mode of action of biologically active compounds. New York: Academic Press, 1964

  85. Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 1993; 21: 457–78

    PubMed  CAS  Google Scholar 

  86. Fiscitelli Sc, Forrest A, Vogel S, et al. A novel PK/PD model for infused interleukin-2 (IL-2) in HIV-infected patients [abstract]. 97th Annual Meeting of the American Society for Clinical Pharmacology and Therapeutics; 1996 Mar 20–22; Florida

    Google Scholar 

  87. Nieforth KA, Nadeau R, Patel IH, et al. Use of an indirect pharmacodynamic stimulation model of MX protein induction to compare in vivo activity of interferon alfa-2a and a polyethylene glycol-modified derivative in healthy subjects. Clin Pharmacol Ther 1996; 59: 636–46

    Article  PubMed  CAS  Google Scholar 

  88. Lee H, Kimko HC, Rogge M, et al. Population pharmacokinetic and pharmacodynamic modeling of etanercept using logistic regression analysis. Clin Pharmacol Ther 2003; 73: 348–65

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The views expressed in this article are those of the authors and do not reflect the official policy of the FDA. No official support or endorsement by the FDA is intended or should be inferred. No sources of funding were used to assist in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftekhar Mahmood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmood, I., Green, M.D. Pharmacokinetic and Pharmacodynamic Considerations in the Development of Therapeutic Proteins. Clin Pharmacokinet 44, 331–347 (2005). https://doi.org/10.2165/00003088-200544040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544040-00001

Keywords

Navigation