Skip to main content
Log in

Rapid thermal processing for silicon nanoelectronics applications

  • Overview
  • Silicon Nanoelectronics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Single-wafer rapid thermal processing, which has become indispensable in the present-day manufacture of integrated circuits, has replaced batch furnace processing to satisfy device and production requirements for reduced thermal budget, process uniformity, high throughput, ease of process development, and low manufacturing cost. To meet the requirements for critical applications, rapid thermal annealing (RTA) techniques have been developed. For example, RTA is used to form ultrashallow junctions in complementarymetal-oxide semiconductor transistors with 10-nm-scale gate lengths. This paper discusses approaches to realize the needed rapidity and uniformity in RTA processes, some of which combine radiative, convective, and conductive heat transfer, to control the rapid thermal cycling of silicon wafers for various processes requiring peak temperatures in the range of 200°C to 1,350°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Meindl, Q. Chen, and J.A. Davis, Science, 293 (2001), pp. 2044–2049.

    Article  CAS  Google Scholar 

  2. R. Chau et al., Physica, E 19 (2003), pp. 1–5.

    Google Scholar 

  3. R. Chau et al., IEEE Trans. Nanotechnology, 4 (2005), pp. 153–158.

    Article  Google Scholar 

  4. P. Majhi et al., Proc. 34th European Solid State Device Research Conf., ESSDRC 2004 (Piscataway, NJ: IEEE, 2004), pp. 185–188.

    Google Scholar 

  5. K.G. Anil et al., VLSI Symposium Tech. Digest (June 2004), pp. 190–191.

  6. G.V. Reddy and M.J. Kumar, IEEE Trans. Nanotechnology, 4 (2005), pp. 260–268.

    Article  Google Scholar 

  7. J.-H. Yang et al., 62nd Device Research Conference Digest (2004), pp. 25–26.

  8. C. Ren et al., IEEE Electron Device Lett., 26 (2005), pp. 75–77.

    Article  CAS  Google Scholar 

  9. W.P. Bai et al., IEEE Electron Device Lett., 26 (2005), pp. 231–233.

    Article  CAS  Google Scholar 

  10. K. Das et al., Electronics Letters, 39 (2003), pp. 1865–1866.

    Article  CAS  Google Scholar 

  11. G. Xia et al., IEEE Trans. Electron Devices, 51 (2004), pp. 2136–2144.

    Article  CAS  Google Scholar 

  12. A.T. Fiory and K.K. Bourdelle, Appl. Phys. Lett., 74 (1999), pp. 2658–2660.

    Article  CAS  Google Scholar 

  13. S. Ramamurthy et al., Solid State Technology, 47 (October 2004).

  14. D.S. Yu et al., IEEE Electron Device Lett., 24 (2003), pp. 739–741.

    Article  CAS  Google Scholar 

  15. S.-J. Park et al., 2003 IEEE Conference on Electron Devices and Solid-State Circuits (Piscataway, NJ: IEEE, 2003), pp. 411–414.

    Book  Google Scholar 

  16. J. Westlinder et al., IEEE Electron Device Lett., 24 (2003), pp. 550–552.

    Article  CAS  Google Scholar 

  17. J.P. Hebb and K.F. Jensen, J. Electrochem. Soc., 143 (1996), pp. 1142–1151.

    Article  CAS  Google Scholar 

  18. J. Roff et al., 10th IEEE Intern. Conf. Advanced Thermal Processing of Semiconductors (Piscataway, NJ: IEEE, 2002), pp. 99–105.

    Google Scholar 

  19. M.O. Thompson, 10th IEEE Intern. Conf. Advanced Thermal Processing of Semiconductors (Piscataway, NJ: IEEE, 2002), p. 193.

    Book  Google Scholar 

  20. S. Earles et al., IEEE Trans. Electron Devices, 49 (2002) pp. 1118–1123.

    Article  CAS  Google Scholar 

  21. Y.F. Chong et al., IEEE Electron Device Lett., 24 (2003), pp. 360–362.

    Article  CAS  Google Scholar 

  22. H.Y. Wong et al., IEEE Electron Device Lett., 26 (2005), pp. 234–236.

    Article  CAS  Google Scholar 

  23. Y.F. Chong et al., IEEE Trans. Electron Devices, 51 (2004), pp. 669–676.

    Article  CAS  Google Scholar 

  24. Nian Zhan et al., IEEE Conf. Electron Devices and Solid State Circuits (Piscataway, NJ: IEEE, 2002, pp. 431–434.

    Google Scholar 

  25. R. Lindsay et al., Fourth Intern. Workshop Junction Technology (Piscataway, NJ: IEEE, 2004), pp. 70–75.

    Book  Google Scholar 

  26. A.T. Fiory, J. Electron. Materials, 31 (2002), pp. 981–987.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A.T. Fiory is with the Department of Physics at the New Jersey Institute of Technology in Newark, New Jersey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiory, A.T. Rapid thermal processing for silicon nanoelectronics applications. JOM 57, 21–26 (2005). https://doi.org/10.1007/s11837-005-0131-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-005-0131-0

Keywords

Navigation