Skip to main content
Log in

Applications of polymer nanofibers in biomedicine and biotechnology

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recent advancements in the electrospinning method enable the production of ultrafine solid and continuous fibers with diameters ranging from a few nanometers to a few hundred nanometers with controlled surface and internal molecular structures. A wide range of biodegradable biopolymers can be electrospun into mats with specific fiber arrangement and structural integrity. Through secondary processing, the nanofiber surface can be functionalized to display specific biochemical characteristics. It is hypothesized that the large surface area of nanofibers with specific surface chemistry facilitates attachment of cells and control of their cellular functions. These features of nanofiber mats are morphologically and chemically similar to the extracellular matrix of natural tissue, which is characterized by a wide range of pore diameter distribution, high porosity, effective mechanical properties, and specific biochemical properties. The current emphasis of research is on exploiting such properties and focusing on determining appropriate conditions for electrospinning various polymers and biopolymers for eventual applications including multifunctional membranes, biomedical structural elements (scaffolds used in tissue engineering, wound dressing, drug delivery, artificial organs, vascular grafts), protective shields in specialty fabrics, and filter media for submicron particles in the separation industry. This has resulted in the recent applications for polymer nanofibers in the field of biomedicine and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frenot, A. and Chronakis, I. S. (2003), Curr. Opin. Colloid Interf. Sci. 8, 64–75.

    Article  CAS  Google Scholar 

  2. Langer, R. and Vacanti, J. P. (1993), Science 260, 920–926.

    Article  CAS  Google Scholar 

  3. Zong, X., Kim, K., Fang, D., Hsiao, B. S., and Chu, B. (2002), Polymer 43, 4403–4412.

    Article  CAS  Google Scholar 

  4. Butler, S. M., Tracy, M. A., and Tilton, R. D. (1999), J. Control. Release 58, 335–337.

    Article  CAS  Google Scholar 

  5. King, E. and Cameron, R. E. (1997), J. Appl. Polym. Sci. 66, 1681–1690.

    Article  CAS  Google Scholar 

  6. Huang, Z. M., Zhang, Y. Z., Kotaki, M., and Ramakrishna, S. (2003), Composites Sci. Technol. 63, 2223–2253.

    Article  CAS  Google Scholar 

  7. Wang, X., Drew, C., Kuma, J., and Samuelson, L. A. (2002), Nano Lett. 2, 1273–1275.

    Article  CAS  Google Scholar 

  8. Ramakrishna, S., Mayer, J., and Leong, K. W. (2001), Composites Sci. Technol. 61, 1189–1224.

    Article  CAS  Google Scholar 

  9. Schreuder-Gibson, H., Gibson, P., Ziegler, D., and Tsai, P. P. (2002), J. Adv. Mater. 34, 44–55.

    Google Scholar 

  10. Ward, G. F. (2001), Filtration Separation 38, 42, 43.

    Article  CAS  Google Scholar 

  11. Lee, S. H., Kim, B. S., Mooney, D. J., and Kim, Y. H. (2003), J. Biomed. Mater. Res. 66A, 29–37.

    Article  CAS  Google Scholar 

  12. Hickman, K. (2002), www.csa.com. Date accessed: March 21, 2005.

  13. Smith, D.J., Reneker, D.M., McManus, A.T. Schreuder-Gibson, H.L., Mello, C., and Sennett, M.S. (2004), The University of Akron, US Patent 6753454.

  14. Kenawy, E. R., Bowlin, G. L., and Mansfield, K. (2002), J. Control. Release 81, 57–64.

    Article  CAS  Google Scholar 

  15. Kim, K., Yu, M., Hsiao, B.S., and Hadjiargyrou, M. (2003), Biomaterials 24, 4977–4985.

    Article  CAS  Google Scholar 

  16. Nakamura, T., Hitomi, S., and Ikada, Y. (1989), J. Biomed. Mater. Res. 23, 1115–1130.

    Article  CAS  Google Scholar 

  17. Miller, M. and Evans, G. R. (1998), in Frontiers in Tissue Engineering, Patrick, C. W., Mikos, A. G., and McIntire, L. V., eds., Pergamon, New York, pp. 213–232.

    Google Scholar 

  18. Ratner, B. D. (1993), J. Biomed. Mater. Res. 27, 837–850.

    Article  CAS  Google Scholar 

  19. Buchko, C. J., Chen, L. C., Shen, Y., and Martin, D. C. (1999), Polymer 40, 7397–7407.

    Article  CAS  Google Scholar 

  20. Gosiewska, A., Rezania, A., Dhanaraj, S., and Geesin, J. C. (2001), Tissue Eng. 7, 267–277.

    Article  CAS  Google Scholar 

  21. Li, W. J., Laurencin, C. T., Tuan, R. S., and Ko, F. K. (2002), J. Biomed. Mater. Res. 60, 613–621.

    Article  CAS  Google Scholar 

  22. Dai, N. T., Williamson, M. R., and Coombes, A. G. A. (2004), Biomaterials 25, 4263–4271.

    Article  CAS  Google Scholar 

  23. Pitt, C. G., Kilmas, D. M., and Schindler, A. (1981), J. Appl. Polym. Sci. 26, 3779–3787.

    Article  CAS  Google Scholar 

  24. Yannas, I. V. (1998), Wound Repair Regen. 6, 518–524.

    Article  CAS  Google Scholar 

  25. Coombes, A. G. A., Verderio, E., Shaw, B., and Downes, D. (2002), Biomaterials 23, 2113–2118.

    Article  CAS  Google Scholar 

  26. Bowlin, G. L. (2003), www.futurepundit.com.

  27. Lee, S. H., Mooney, D. J., and Kim, Y. H. (2003), J. Biomed. Mater. Res. 66A, 29–37.

    Article  CAS  Google Scholar 

  28. Robins, B. D. (1992), Br. J. Theatre Nurs. 12, 9–12.

    Google Scholar 

  29. Mo, X. M., Xu, C. Y., Kotaki, M., and Ramakrishna, S. (2004), Biomaterials 25, 1883–1890.

    Article  CAS  Google Scholar 

  30. Xu, C. Y., Inai, R., Kotaki, M., and Ramakrishna, S. (2004), Biomaterials 25, 877–886.

    Article  CAS  Google Scholar 

  31. Chung, T. W., Liu, T. W., Wang, D. Z., and Wang, S. S. (2003), Biomaterials 24, 4655–4661.

    Article  CAS  Google Scholar 

  32. Grad, S., Kupcsik, L., Gogolewski, S., and Alini, M. (2003), Biomaterials 24, 5163–5171.

    Article  CAS  Google Scholar 

  33. Lu, L., Zhu, X., Valenzuela, R. G., and Yaszemski, M. J. (2001), Clin. Orthop. 391, S251-S270.

    Article  Google Scholar 

  34. Reinholz, G. G., Lu, L., and Driscoll, S. W. (2004), Biomaterials 25, 1511–1521.

    Article  CAS  Google Scholar 

  35. Grande, D. A., Halberstadt, C., Schwartz, R., and Manji, R. (1997), J. Biomed. Mater. Res. 34, 211–220.

    Article  CAS  Google Scholar 

  36. Freed, L. E., Rupnick, M. A., Schaefer, D., and Vunjak-Novakovic (2003) in Functional Tissue Engineering: The Role of Biomechanics, Guilak, F., Butler, D., Mooney, D., and Goldstein, S., eds., Springer Verlag, pp. 360–376.

  37. Olivier, V., Faucheux, N., and Hardouin, P. (2004), Drug Discov. Today 9, 803–811.

    Article  CAS  Google Scholar 

  38. Caplan, A. I. (1991), J. Orthop. Res. 9, 641–650.

    Article  CAS  Google Scholar 

  39. Pittenger, M. F., Douglas, R., and Marshak, D. R. (1999), Science 284, 143–147.

    Article  CAS  Google Scholar 

  40. Terai, H., Yamano, Y., and Vacanti, J. P. (2002), Mater. Sci. Eng. C 20, 3–8.

    Article  Google Scholar 

  41. Leong, K. W., Brott, B. C., and Langer, R. (1985), J. Biomed. Mater. Res. 19, 941–955.

    Article  CAS  Google Scholar 

  42. Benicewicz, B. C. and Hopper, P. K. (1991), J. Bioact. Compat. Polym. 6, 64–94.

    Article  CAS  Google Scholar 

  43. Holland, S., Tighe, B. J., and Gould, P. L. (1986), J. Control. Release 4, 155–180.

    Article  CAS  Google Scholar 

  44. Ishaug, S. L., Bizios, R., and Mikos, A. G. (1994), J. Biomed. Mater. Res. 28, 1445–1453.

    Article  CAS  Google Scholar 

  45. Yoshimoto, H., Terai, H., and Vacanti, J. P. (2003), Biomaterials 24, 2077–2082.

    Article  CAS  Google Scholar 

  46. Rizzi, S. C., Bock, N., and Downes, S. (2001), J. Biomed. Mater. Res. 55, 475–486.

    Article  CAS  Google Scholar 

  47. Kikuchi, M., Cho, S. B., and Tanaka, J. (1997), Bioceramics 10, 407–410.

    Google Scholar 

  48. Piattelli, A., Santello, M. T. and Scarano, A. (1997), Biomaterials 18, 629–633.

    Article  CAS  Google Scholar 

  49. Price, R. L., Haberstroh, K. M., and Webster, T. J. (2003), Biomaterials 24, 1877–1887.

    Article  CAS  Google Scholar 

  50. Elias, K. E., Price, R. L., and Webster, T. J. (2002), Biomaterials 23, 3279–3287.

    Article  CAS  Google Scholar 

  51. Thomson, R. C., Shung, A. K., and Mikos, A. G. (2000), in Principles of Tissue Engineering, Lanza, R. P., Langer, R., Vacanti, J. P., eds., Academic, San Diego, pp. 251–261.

    Google Scholar 

  52. Yang, F., Murugan, R., Ramakrishna, M. S. and Wang, S. (2004), Biomaterials 25, 1891–1900.

    Article  CAS  Google Scholar 

  53. Spilker, M. H., Asano, K., Yannas, I. V., and Spector, M. (2001), Biomaterials 22, 1085–1093.

    Article  CAS  Google Scholar 

  54. Widmer, M. S., Gupta, P. K., and Mikos, A. G. (1998), Biomaterials 19, 1945–1955.

    Article  CAS  Google Scholar 

  55. Fabre, T., Schappacher, M., Soum, A., Bertrand-Barat, J., and Baquey, C. (2001), Biomaterials 22, 2951–2958.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Venugopal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venugopal, J., Ramakrishna, S. Applications of polymer nanofibers in biomedicine and biotechnology. Appl Biochem Biotechnol 125, 147–157 (2005). https://doi.org/10.1385/ABAB:125:3:147

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:125:3:147

Index Entries

Navigation