Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lymphotoxin pathway directs thymic Aire expression

Abstract

The autoimmune regulator Aire is a key mediator of central tolerance for peripherally restricted antigens. Its absence in human patients results in autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. The cellular signals that regulate Aire expression are undefined. We show here that lymphotoxin signaling is necessary for the expression of Aire and its downstream target genes. The failure of Aire induction in the thymi of lymphotoxin-deficient and lymphotoxin-β receptor–deficient mice contributes to overt autoimmunity against self antigens normally protected by Aire. Conversely, stimulation of lymphotoxin-β receptor by agonistic antibody leads to increased expression of Aire and tissue-restricted antigens in both intact thymi and cultured thymic epithelial cell line. These findings define the essential cross-talk between thymocytes and thymic stroma that is required for central tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infiltration and inflammation in peripheral organs of Lta−/− and Ltbr−/− mice.
Figure 2: Lymphotoxin and LTβR regulate Aire expression in the thymus.
Figure 3: Induction of Aire expression with agonistic anti-LTβR.
Figure 4: Increased autoantibody production in Lta−/− and Ltbr−/− mice.
Figure 5: Autoimmune inflammation in lymphotoxin-deficient mice is lymphocyte autonomous.

Similar content being viewed by others

References

  1. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    Article  CAS  Google Scholar 

  2. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. The Finnish-German APECED Consortium. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Nat. Genet. 17, 399–403 (1997).

  3. Ahonen, P. Autoimmune polyendocrinopathy–candidosis–ectodermal dystrophy (APECED): autosomal recessive inheritance. Clin. Genet. 27, 535–542 (1985).

    Article  CAS  Google Scholar 

  4. Bjorses, P., Aaltonen, J., Horelli-Kuitunen, N., Yaspo, M.L. & Peltonen, L. Gene defect behind APECED: a new clue to autoimmunity. Hum. Mol. Genet. 7, 1547–1553 (1998).

    Article  CAS  Google Scholar 

  5. Peterson, P. et al. APECED: a monogenic autoimmune disease providing new clues to self-tolerance. Immunol. Today 19, 384–386 (1998).

    Article  CAS  Google Scholar 

  6. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  Google Scholar 

  7. Fu, Y.X. & Chaplin, D.D. Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol. 17, 399–433 (1999).

    Article  CAS  Google Scholar 

  8. Ware, C.F., VanArsdale, T.L., Crowe, P.D. & Browning, J.L. The ligands and receptors of the lymphotoxin system. Curr. Top. Microbiol. Immunol. 198, 175–218 (1995).

    CAS  PubMed  Google Scholar 

  9. Cyster, J.G. Chemokines and cell migration in secondary lymphoid organs. Science 286, 2098–2102 (1999).

    Article  CAS  Google Scholar 

  10. Wu, Q. et al. Reversal of spontaneous autoimmune insulitis in nonobese diabetic mice by soluble lymphotoxin receptor. J. Exp. Med. 193, 1327–1332 (2001).

    Article  CAS  Google Scholar 

  11. Agyekum, S. et al. Expression of lymphotoxin-β (LT-β) in chronic inflammatory conditions. J. Pathol. 199, 115–121 (2003).

    Article  Google Scholar 

  12. Mackay, F. et al. Both the lymphotoxin and tumor necrosis factor pathways are involved in experimental murine models of colitis. Gastroenterology 115, 1464–1475 (1998).

    Article  CAS  Google Scholar 

  13. Banks, T.A. et al. Lymphotoxin-α-deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness. J. Immunol. 155, 1685–1693 (1995).

    CAS  PubMed  Google Scholar 

  14. Futterer, A., Mink, K., Luz, A., Kosco-Vilbois, M.H. & Pfeffer, K. The lymphotoxin-β receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9, 59–70 (1998).

    Article  CAS  Google Scholar 

  15. Browning, J.L. & French, L.E. Visualization of lymphotoxin-β and lymphotoxin-β receptor expression in mouse embryos. J. Immunol. 168, 5079–5087 (2002).

    Article  CAS  Google Scholar 

  16. Heino, M. et al. RNA and protein expression of the murine autoimmune regulator gene (Aire) in normal, RelB-deficient and in NOD mouse. Eur. J. Immunol. 30, 1884–1893 (2000).

    Article  CAS  Google Scholar 

  17. Burkly, L. et al. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373, 531–536 (1995).

    Article  CAS  Google Scholar 

  18. Dejardin, E. et al. The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways. Immunity 17, 525–535 (2002).

    Article  CAS  Google Scholar 

  19. Klug, D.B., Carter, C., Gimenez-Conti, I.B. & Richie, E.R. Cutting edge: thymocyte-independent and thymocyte-dependent phases of epithelial patterning in the fetal thymus. J. Immunol. 169, 2842–2845 (2002).

    Article  CAS  Google Scholar 

  20. Faas, S.J., Rothstein, J.L., Kreider, B.L., Rovera, G. & Knowles, B.B. Phenotypically diverse mouse thymic stromal cell lines which induce proliferation and differentiation of hematopoietic cells. Eur. J. Immunol. 23, 1201–1214 (1993).

    Article  CAS  Google Scholar 

  21. Vukmanovic, S., Jameson, S.C. & Bevan, M.J. A thymic epithelial cell line induces both positive and negative selection in the thymus. Int. Immunol. 6, 239–246 (1994).

    Article  CAS  Google Scholar 

  22. Murumagi, A., Vahamurto, P. & Peterson, P. Characterization of regulatory elements and methylation pattern of the autoimmune regulator (AIRE) promoter. J. Biol. Chem. 278, 19784–19790 (2003).

    Article  Google Scholar 

  23. Ettinger, R. et al. A critical role for lymphotoxin-β receptor in the development of diabetes in nonobese diabetic mice. J. Exp. Med. 193, 1333–1340 (2001).

    Article  CAS  Google Scholar 

  24. Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C.C. Aire regulates negative selection of organ-specific T cells. Nat. Immunol. 4, 350–354 (2003).

    Article  CAS  Google Scholar 

  25. Zuklys, S. et al. Normal thymic architecture and negative selection are associated with Aire expression, the gene defective in the autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). J. Immunol. 165, 1976–1983 (2000).

    Article  CAS  Google Scholar 

  26. Yilmaz, Z.B., Weih, D.S., Sivakumar, V. & Weih, F. RelB is required for Peyer's patch development: differential regulation of p52-RelB by lymphotoxin and TNF. Embo. J. 22, 121–130 (2003).

    Article  CAS  Google Scholar 

  27. Pomerantz, J.L. & Baltimore, D. Two pathways to NF-κB. Mol. Cell. 10, 693–695 (2002).

    Article  CAS  Google Scholar 

  28. Grech, A.P. et al. Increased thymic B cells but maintenance of thymic structure, T cell differentiation and negative selection in lymphotoxin-α and TNF gene-targeted mice. Dev. Immunol. 8, 61–74 (2000).

    Article  CAS  Google Scholar 

  29. Weih, F. et al. Both multiorgan inflammation and myeloid hyperplasia in RelB-deficient mice are T cell dependent. J. Immunol. 157, 3974–3979 (1996).

    CAS  PubMed  Google Scholar 

  30. Browning, J.L. et al. Characterization of lymphotoxin-αβ complexes on the surface of mouse lymphocytes. J. Immunol. 159, 3288–3298 (1997).

    CAS  PubMed  Google Scholar 

  31. De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by National Institutes of Health grants (HD-37104, AI 33068 and DK-58891). R.K.C. and J.C.L. were supported by a Medical Scientist National Research Service Award (5 T32 GM07281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Xin Fu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, R., Lo, J., Kim, O. et al. Lymphotoxin pathway directs thymic Aire expression. Nat Immunol 4, 1121–1127 (2003). https://doi.org/10.1038/ni982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni982

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing