Skip to main content
Log in

Extraterrestrial Organic Compounds in Meteorites

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2002

Abstract

Many organic compounds or their precursorsfound in meteorites originated in the interstellar or circumstellarmedium and were later incorporated intoplanetesimals during the formation of thesolar system. There they either survivedintact or underwent further processing tosynthesize secondary products on themeteorite parent body.The most distinct feature of CI and CM carbonaceouschondrites, two typesof stony meteorites, is their high carbon content(up to 3% of weight), either in theform of carbonates or of organic compounds. The bulkof the organic carbon consistsof an insoluble macromolecular material with a complexstructure. Also present is asoluble organic fraction, which has been analyzedby several separation and analyticalprocedures. Low detection limits can be achievedby derivatization of the organicmolecules with reagents that allow for analysisby gas chromatography/massspectroscopy and high performance liquidchromatography. The CM meteoriteMurchison has been found to contain more than70 extraterrestrial amino acids andseveral other classes of compounds includingcarboxylic acids, hydroxy carboxylicacids, sulphonic and phosphonic acids, aliphatic,aromatic and polar hydrocarbons,fullerenes, heterocycles as well as carbonylcompounds, alcohols, amines and amides.The organic matter was found to be enriched indeuterium, and distinct organiccompounds show isotopic enrichments of carbon andnitrogen relative to terrestrialmatter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, C.M. O'D., Russell, S.S., Arden, J.W., Ash, R.D., Grady, M.M., and Pillinger, C.T.: 1998, The Origin of Chondritic Macromolecular Organic Matter: A Carbon and Nitrogen Isotope Study, Meteorit. Planet. Sci. 33, 603–622.

    Google Scholar 

  • Allamandola, L.J., Tielens, A.G.G.M., and Barker, J.R.: 1985, Interstellar Polycyclic Aromatic Hydrocarbons: The Infrared Emission Bands, the Excitation/Emission Mechanism, and the Astrophysical Implications, Astrophys. J. Suppl. Ser. 71, 733–775.

    Google Scholar 

  • Allamandola, L.J., Bernstein, M.P., Sandford, S.A., and Walker, R. L.: 1999, Evolution of Interstellar Ices, Space Sci. Rev. 90, 219–232.

    Google Scholar 

  • Amari, S., Lewis, R.S., and Anders, E.: 1994, Interstellar Grains in Meteorites: I. Isolation of SiC, Graphite and Diamond; Size Distribution of SiC and Graphite, Geochim. Cosmochim. Acta 58, 459–470.

    Google Scholar 

  • Anders, E.: 1989, Pre-biotic Organic Matter from Comets and Asteroids, Nature 342, 255–257.

    Google Scholar 

  • Anders, E., DuFresne, E.R., Hayatsu, R., Cavaillé, A., DuFresne, A., and Fitch, F.W.: 1964, Contaminated Meteorite, Science 146, 1157–1161.

    Google Scholar 

  • Aswad, D.W.: 1984, Determination of D-and L-Aspartate in Amino Acid Mixtures by High-Performance Liquid Chromatography after Derivatization with a Chiral Adduct of o-Phthaldialdehyde, Anal. Biochem. 137, 405–409.

    Google Scholar 

  • Bada, J.L., Glavin, D.P., McDonald, G.D., and Becker, L.: 1998, A Search for Endogenous Amino Acids in Martian Meteorite ALH84001, Science 279, 362–365.

    Google Scholar 

  • Bailey, J., Chrysostomou, A., Hough, J.H., Gledhill, T.M., McCall, A., Clark, S., Ménard, and F., Tamura, M.: 1998, Circular Polarization in Star-Formation Regions: Implications for Biomolecular Homochirality, Science 281, 672–674.

    Google Scholar 

  • Basile, B.P., Middleditch, B.S., and Or'o, J.: 1984, Polycyclic Aromatic Hydrocarbons in the Murchison Meteorite, Org. Geochem. 5, 211–216.

    Google Scholar 

  • Beaumont, V. and Robert, F.: 1999, Nitrogen Isotope Ratios of Kerogens in Precambrian Cherts: A Record of the Evolution of Atmospheric Chemistry?', Precambrian Res. 96, 63–82.

    Google Scholar 

  • Becker, L., Bada, J.L., Winans, R.E., and Bunch, T.E.: 1994, Fullerenes in Allende Meteorite, Nature 372, 507.

    Google Scholar 

  • Becker, L., Poreda, R.J., Bada, J.L.: 1996, Extraterrestrial Helium Trapped in Fullerenes in the Sudbury Impact Structure, Science 272, 249–252.

    Google Scholar 

  • Becker, L., Glavin, D.P., and Bada, J.L.: 1997, Polycyclic Aromatic Hydrocarbons (PAHs) in Antarctic Martian Meteorites, Carbonaceous Chondrites, and Polar Ice, Geochim. Cosmochim. Acta 61, 475–481.

    Google Scholar 

  • Becker, L., Bunch, T.E., and Allamandola, L.J.: 1999, Higher Fullerenes in the Allende Meteorite, Nature 400, 227–228.

    Google Scholar 

  • Becker, L., Poreda, R.J., Bunch, T.E.: 2000, Fullerenes: An extraterrestrial Carbon Carrier Phase for Noble Gases', Proc. Nat. Acad. Sci. 97, 2979–2983.

    Google Scholar 

  • Becker, L., Poreda, R.J., Hunt, A.G., Bunch, T.E., and Rampino, M.: 2001, Impact Event at the Permian-Triassic Boundary: Evidence from Extraterrestrial Noble Gases in Fullerenes, Science 291, 1530-1533.

    Google Scholar 

  • Becker, R.H. and Epstein, S.: 1982, Carbon, Hydrogen and Nitrogen Isotopes in Solvent-extractable Organic Matter from carbonaceous Chondrites, Geochim. Cosmochim. Acta 46, 97–103.

    Google Scholar 

  • Becker, R.H. and Pepin, R.O.: 1984, The Case for a Martian Origin of the Shergottites: Nitrogen and Noble Gas in EETA 79001, Earth Planet. Sci. Lett. 69, 225–242.

    Google Scholar 

  • Bernstein, M.P., Sandford, S.A., Allamandola, L.J., Chang, S., and Scharberg, M.A.: 1995, Organic Compounds Produced by Photolysis of Realistic Interstellar and Cometary Ice Analogs Containing Methanol, Astrophys. J. 454, 327–344.

    Google Scholar 

  • Bernstein, M.P., Sandford, S.A., and Allamandola, L.J.: 1997, The Infrared Spectra of Nitriles and Related Compounds Frozen in Ar and H2O, Astrophys. J. 476, 932–942.

    Google Scholar 

  • Bernstein, M.P., Sandford, S.A., Allamandola, L.J., and Gillette, J.S., Clemett, S.J., and Zare, R.N.: 1999, UV Irradiation of Polycyclic Aromatic Hydrocarbons in Ices: Production of Alcohols, Quinones, and Ethers, Science 283, 1135–1138.

    Google Scholar 

  • Bischoff, A., Palme, H., Schultz, L., Weber, D., Weber, H.W., and Spettel, B.: 1993, Acfer 182 and Paired Samples, an Iron-Rich Carbonaceous Chondrite: Similarities with ALH85085 and Relationship to CR Chondrites, Geochim. Cosmochim. Acta 57, 2631–2648.

    Google Scholar 

  • Bland, P.A. and Smith, T.B.: 2000, Meteorite Accumulation on Mars, Icarus 144, 21–26.

    Google Scholar 

  • Bockelée-Morvan, D., Gautier, D., Lis, D.C., Young, K., Keene, J., Phillips, T., Owen, T., Crovisier, J., Goldsmith, P.F., Bergin, E.A., Despois, D., and Wootten, A.: 1998, DeuteratedWater in Comet C/1996 B2 (Hyakutake) and Its Implications for the Origin of Comets, Icarus 133, 147–162.

    Google Scholar 

  • Bockelée-Morvan, D., Lis, D.C., Wink, J.E., Despois, D., Crovisier, J., Bachiller, R., Benford, D.J., Biver, N., Colom, P., Davies, J.K., Gérard, E., Germain, B., Houde, M., Mehringer, D., Moreno, R., Paubert, G., Phillips, T.G., and Rauer, H.: 2000, New Molecules Found in Comet C/1995 O1 (Hale-Bopp), Astron. Astrophys. 353, 1101–1114.

    Google Scholar 

  • Bogard, D.D. and Johnson, P.: 1983, Martian Gases in an Antarctic Meteorite? Science 221, 651–654.

    Google Scholar 

  • Bonner, W.A. and Rubenstein, E.: 1987, Supernovae, Neutron Stars and Biomolecular Chirality, BioSystems 20, 99–111.

    Google Scholar 

  • Bonner, W.A.: 1991, The Origin and Amplification of Biomolecular Chirality, Origins Life Evol. Biosphere 21, 59–111.

    Google Scholar 

  • Brearley, A.J.: 1997, Phyllosilicates in theMatrix of the Unique Carbonaceous Chondrite Lewis Cliff 85332 and Possible Implications for the Aqueous Alteration of CI Chondrites, Meteorit. Planet. Sci. 32, 377–388.

    Google Scholar 

  • Brinton, K.L.F.: 1998, Exogenous Delivery of Amino Acids to the Earth and Other Solar System Bodies: A Source of Prebiotic Compounds for the Origin of Life?, Ph.D. Thesis, Scripps Institution of Oceanography, University of California at San Diego, 235 pp.

  • Brinton, K.L.F., Engrand, C., Glavin, D.P., Bada, J.L., and Maurette, M.: 1998, A Search for Extraterrestrial Amino Acids in Carbonaceous Antarctic Micrometeorites, Orig. Life Evol. Biosphere 28, 413–424.

    Google Scholar 

  • Brown, P.G., Hildebrand, A.R., Zolensky, M.E., Grady, M., Clayton, R.N., Mayeda, T.K., Tagliaferri, E., Spalding, R., McRae, N.D., Hoffman, E.L., Mittlefehldt, D.W., Wacker, J.F., Bird, J.A., Campbell, M.D., Carpenter, R., Gingerich, H., Glatiotis, M., Greiner, E., Mazur, M.J., McCausland, P.J., Plotkin, H., Rubak Mazur, T.: 2000, The Fall, Orbit, and Composition of the Tagish Lake Meteorite: A New Type of Carbonaceous Chondrite, Science 290, 320–325.

    Google Scholar 

  • Bunch, T.E. and Chang, S.: 1980, Carbonaceous Chondrites-II. Carbonaceous Chondrite Phyllosilicates and Light Element Geochemistry as Indicators of Parent Body Processes and Surface Conditions, Geochim. Cosmochim. Acta 44, 1543–1577.

    Google Scholar 

  • Burbine, T.: 1998, Could G-class Asteroids Be the Parent Bodies of the CM Chondrites?, Meteorit. Planet. Sci. 33, 253–258.

    Google Scholar 

  • Campins, H. and Swindle, T.D.: 1998, Expected Characteristics of Cometary Meteorites, Meteorit. Planet. Sci. 33, 1201–1211.

    Google Scholar 

  • Chang, S., DesMarais, D., Mack, R., Miller, S.L., Strathearn, G.E.: 1983, Prebiotic Organic Synthesis and the Origin of Life, in J. W. Schopf (ed.), Earth's Earliest Biosphere, Princeton University Press, Princeton, NJ, USA, pp. 53–92.

    Google Scholar 

  • Cherchneff, I., Barker, J.R., and Tielens, A.G.G.M.: 1992, Polycyclic Aromatic Hydrocarbon Formation in Carbon-rich Stellar Envelopes, Astrophys. J. 401, 269–287.

    Google Scholar 

  • Chyba, C.F., Thomas, P.J., Brookshaw, L., and Sagan, C.: 1990, Cometary Delivery of Organic Molecules to the Early Earth, Science 249, 366–373.

    Google Scholar 

  • Chyba, C.F. and Sagan, C: 1992, Endogenous Production, Exogenous Delivery and Impact-Shock Synthesis of Organic Molecules: An Inventory for the Origins of Life, Nature 355, 125–132.

    Google Scholar 

  • Claus, G. and Nagy, B.: 1961, A Microbial Examination of some Carbonaceous Chondrites, Nature 192, 594–596.

    Google Scholar 

  • Clayton, R.N. and Mayeda, T.K.: 1984, The Oxygen Isotope Record in Murchison and Other Carbonaceous Chondrites, Earth Planet. Sci. Lett. 67, 151–161.

    Google Scholar 

  • Clemett, S.J., Maechling, C.R., Zare, R.N., Swan, P.D., and Walker, R. M.: 1993, Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles, Science 262, 721–725.

    Google Scholar 

  • Clemett, S.J., Chillier, X.D.F., Gillette, S., Zare, R.N., Maurette, M., Engrand, C., and Kurat, G.: 1998, Observation of Indigenous Polycyclic Aromatic Hydrocarbons in ‘Giant’ Carbonaceous Antarctic Micrometeorites, Origins Life Evol. Biosphere 28, 425–448.

    Google Scholar 

  • Cloëz, S.: 1864, Analyse Chimique de la Pierre Météorique d'Orgueil, Comp. Rend. Acad. Sci. Paris 59, 37–40.

    Google Scholar 

  • Cooper, G.W., Onwo, W.M., and Cronin, J.R.: 1992, Alkyl Phosphonic Acids and Sulfonic Acids in the Murchison Meteorite, Geochim. Cosmochim. Acta 56, 4109–4115.

    Google Scholar 

  • Cooper, G.W. and Cronin, J.R.: 1995, Linear and Cyclic Carboxamides of the Murchison Meteorite: Hydrolyzable Derivatives of Amino Acids and Other Carboxylic Acids, Geochim. Cosmochim. Acta 59, 1003–1015.

    Google Scholar 

  • Cooper, G.W., Thiemens, M.H., Jackson, T.L., and Chang, S.: 1997, Sulfur and Hydrogen Isotope Anomalies inMeteorite Sulfonic Acids, Science 277, 1072–1074. Cronin, J. R.,Moore, C.: 1976, Amino Acids in the Nogoya and Mokoia Carbonaceous Chondrites, Geochim. Cosmochim. Acta 40, 853-857.

    Google Scholar 

  • Cronin, J.R. and Pizzarello, S.: 1983, Amino Acids in Meteorites, Adv. Space Res. 3, 5–18.

    Google Scholar 

  • Cronin, J.R., Pizzarello, S., Gandy, W.E.: 1979, Amino Acids Analysis with o-Phthalaldehyde Detection: Effects of Reaction Temperature and Thiol on Fluorescence Yields, Anal. Biochem. 93, 174–179.

    Google Scholar 

  • Cronin, J. R., Gandy, W. E., and Pizzarello, S.: 1981, Amino Acids of the Murchison Meteorite: I. Six Carbon Acyclic Primary α-Amino Alkanoic Acids, J. Mol. Evol. 17, 265–272.

    Google Scholar 

  • Cronin, J. R. and Pizzarello, S.: 1986, Amino Acids of the Murchison Meteorite: III. Seven Carbon Acyclic Primary α-Amino Alkanoic Acids, Geochim. Cosmochim. Acta 50, 2419–2427.

    Google Scholar 

  • Cronin, J.R., Pizzarello, S., Frye, J.S.: 1987, 13C NMR Spectroscopy of the Insoluble Carbon of Carbonaceous Chondrites, Geochim. Cosmochim. Acta 51, 299–303.

    Google Scholar 

  • Cronin, J.R., Pizzarello, S., and Cruikshank, D.P.: 1988, OrganicMatter in Carbonaceous Chondrites, Planetary Satellites, Asteroids and Comets, in J.F. Kerridge, M.S. Matthews (eds.), Meteorites and The Early Solar System, University of Arizona Press, Tucson, AZ, USA, pp. 819–857.

    Google Scholar 

  • Cronin, J.R. and Pizzarello, S.: 1990, Aliphatic Hydrocarbons of the Murchison Meteorite, Geochim. Cosmochim. Acta 54, 2859–2868.

    Google Scholar 

  • Cronin, J.R. and Chang, S.: 1993, Organic Matter in Meteorites: Molecular and Isotopic Analyses of the Murchison Meteorites, in J.M. Greenberg, C.X. Mendoza-Gomez and V. Pirronello (eds.), The Chemistry of Life's Origin, Kluwer Academic Publishers, The Netherlands, pp. 209–258.

    Google Scholar 

  • Cronin, J.R., Pizzarello, S., Epstein, S., and Krishnamurthy, R.V.: 1993, Molecular and Isotopic Analyses of the Hydroxy Acids, Dicarboxylic Acids, and Hydroxydicarboxylic Acids of the Murchison Meteorite, Geochim. Cosmochim. Acta 57, 4745–4752.

    Google Scholar 

  • Cronin, J.R. and Pizzarello, S: 1997: Enantiomeric Excesses in Meteoritic Amino Acids, Science 275, 951–955.

    Google Scholar 

  • Cruikshank, D. P., Allamandola, L.J., Hartmann, W.K., Tholen, D. J., Brown, R. H., Matthews, C.N., and Bell, J.F.: 1991, Solid Ca=N-bearing Material on Outer Solar System Bodies, Icarus 94, 345–353.

    Google Scholar 

  • Cruikshank, D.P.: 1997, Organic Matter in the Outer Solar System: From Meteorites to the Kuiper Belt, in Y.J. Pendleton and A.G.G.M. Thielens (eds.), From Stardust to Planetesimals, ASP Conference Series 122, USA, pp. 315–333.

  • Cruikshank, D.P., Roush, T.L., Bartholomew, M.J., Geballe, T.R., Pendleton, Y.J., White, S.M., Bell, J.F., Davies, J.K., Owen, T.C., de Bergh, C., Tholen, D.J., Bernstein, M.P., Brown, R.H., Tryka, K.A., Dalle Ore, C.M.: 1998, The Composition of Centaur 5145 Pholus, Icarus 135, 389–407.

    Google Scholar 

  • Desch, S.J., Cuzzi, J.N.: 2000, 'The Generation of Lightning in the Solar Nebula, Icarus 143, 87–105.

    Google Scholar 

  • Diederich, F. and Whetten, F.: 1992, Beyond C60: The Higher Fullerenes, Acc. Chem. Res. 25, 119–126.

    Google Scholar 

  • Deamer, D.: 1997, The First Living Systems: A Bioenergetic Perspective, Microbiol. Mol. Biol. Rev. 61, 239–261.

    Google Scholar 

  • DuFresne, E.R. and Anders, E.: 1962, On the Chemical Evolution of the Carbonaceous Chondrites, Geochim. Cosmochim. Acta 26, 1085–1114.

    Google Scholar 

  • Ehrenfreund, P., Boogert, A.C.A., Gerakines, P.A., Tielens, A.G.G.M., and van Dieshoeck, E.F.: 1997, Infrared Spectroscopy of Interstellar Apolar Ice Analogs, Astron. Astrophys. 328, 649–669.

    Google Scholar 

  • Ehrenfreund, P. and Charnley, S.B: 2000, Organic Molecules in the Interstellar Medium, Comets and Meteorites: A Voyage from Dark Clouds to the Early Earth, Ann. Rev. Astron. Astrophys. 38, 427–483.

    Google Scholar 

  • Ehrenfreund, P., Glavin, D., Botta, O., Cooper, G.W., G., and Bada, J.B.: 2001, ExtraterrestrialAmino Acid in Orgueil and Ivuna: Tracing the Parent Body of CI Type Carbonaceous Chondrites, Proc. Natl. Acad. Sci. USA 98, 2138–2141.

    Google Scholar 

  • Endress, M. and Bischoff, A.: 1996, Carbonates in CI Chondrites: Clues to Parent Body Evolution, Geochim. Cosmochim. Acta 60, 489–507.

    Google Scholar 

  • Endress, M., Zinner, E., and Bischoff, A.: 1996, Early Aqueous Activity on Primitive Meteorite Parent Bodies, Nature 379, 701–703.

    Google Scholar 

  • Engel, M.H., Macko, S.A., and Silfer, J.A.: 1990, Carbon Isotope Composition of Individual Amino Acids in the Murchison Meteorite, Nature 348, 47–49.

    Google Scholar 

  • Engel, M.H. and Macko, S.A.: 1997, Isotopic Evidence for Extraterrestrial Non-racemic Amino Acids in the Murchison Meteorite, Nature 389, 265–268.

    Google Scholar 

  • Epstein, S., Krishnamurthy, R.V., Cronin, J.R., Pizzarello, S., Yuen, G.U.: 1987, Unusual Stable Isotope Ratios in Amino Acid and Carboxylic Acid Extracts from the Murchison Meteorite, Nature 326, 477–479.

    Google Scholar 

  • Ferris, J.P., Joshi, P.C., Edelson, E.H., and Lawless, J.G.: 1978, HCN: A Plausible Source of Purines, Pyrimidines and Amino Acids on the Primitive Earth, J. Mol. Evol. 11, 293–311.

    Google Scholar 

  • Flores, J.J., Bonner, W.A., and Massey, G.A.: 1977, Asymmetric Photolysis of (RS)-Leucine with Circularly Polarized Ultraviolet Light, J. Am. Chem. Soc. 99, 3622–3625.

    Google Scholar 

  • Foing, B.H. and Ehrenfreund, P.: 1996, Fullerenes in Space, Adv. Space Res. 19, 1033–1042.

    Google Scholar 

  • Folsome, C.E., Lawless, J.G., Romiez, M., and Ponnamperuma, C.: 1973, Heterocyclic Compounds Recovered from Carbonaceous Chondrites, Geochim. Cosmochim. Acta 37, 455–465.

    Google Scholar 

  • Gerakines, P.A., Schutte, W.A., and Ehrenfreund, P.: 1996, Ultraviolet Processing of Interstellar Ice Analogs, Astron. Astrophys 312, 289–305.

    Google Scholar 

  • Gibb, E.L., Whittet, D.C.B., Schutte, W.A., Boogert, A.C.A., Chiar, J.E., Ehrenfreund, P., Gerakines, P.A., Keane, J.V., Tielens, A.G.G.M., van Dieshoeck, E.F., Kerkhof, O.: 2000, An Inventory of Interstellar Ices Toward the Embedded Protostar W33A, Astrophys. J. 536, 347–356.

    Google Scholar 

  • Gibson, E.K., Moore, C.B., and Lewis, C.F.: 1971, Total Nitrogen and Carbon Abundances in Carbonaceous Chondrites, Geochim. Cosmochim. Acta 35, 599–604.

    Google Scholar 

  • Gilmour, I. and Pillinger, C.T.: 1994, Isotopic Compositions of Individual Polycyclic Aromatic Hydrocarbons from the Murchison Meteorite, Mon. Not. R. Astron. Soc. 269, 235–240.

    Google Scholar 

  • Glassgold, A.E.: 1996, Circumstellar Photochemistry, Annu. Rev. Astron. Astrophys. 34, 241–277.

    Google Scholar 

  • Glavin, D.P. and Bada, J.L.: 1998, Isolation of Amino Acids from Natural Samples Using Sublimation, Anal. Chem. 70, 3119–3122.

    Google Scholar 

  • Glavin, D.P., Bada, J.L., Brinton, K.L.F., and McDonald, G.D.: 1999, Amino Acids in the Martian Meteorite Nakhla, Proc. Natl. Acad. Sci. USA 96, 8835–8838.

    Google Scholar 

  • Glavin, D.P., Bada, J.L.: 2001, Survival of Amino Acids in Micrometeorites During Atmsopheric Entry, Astrobiology, in press.

  • Grady, M.M., Wright, I.P., Swart, P.K., and Pillinger, C.T.: 1988, The Carbon and Oxygen Isotopic Composition of Meteoritic Carbonates, Geochim. Cosmochim. Acta 52, 2855–2866.

    Google Scholar 

  • Greenberg, J.M.: 1982, Dust in Dense Clouds: One Stage in a Cycle, in J.E. Beckman and J.P. Phillips (eds.), Submillimetre Wave Astronomy, Cambridge University Press, UK, pp. 261–306.

    Google Scholar 

  • Greenberg, J.M.: 1993, Physical and Chemical Composition of Comets - From Interstellar Space to the Earth, in J.M. Greenberg, C.X. Mendoza-Gomez and V. Pirronello (eds.), The Chemistry of Life's Origin, Kluwer Academic Publishers, The Netherlands, pp. 195–207.

    Google Scholar 

  • Greenberg, J.M., Kouchi, A., Niessen, W., Irth, H., van Paradijs, J., de Groot, M., and Hermsen, W.: 1994, Interstellar Dust, Chirality, Comets and the Origins of Life: Life from Dead Stars?, J. Biol. Phys. 20, 61–70.

    Google Scholar 

  • Greshake, A., Klock, W., Arndt, P., Maetz, M., Flynn, G.J., Bajt, S., Bischoff, A.: 1998, Heating Experiments Simulating Atmospheric Entry Heating of Micrometeorites: Clues to Their Parent Body Sources, Meteorit. Planet. Sci. 33, 267–290.

    Google Scholar 

  • Hagen, W., Allamandola, L.J., and Greenberg, J.M.: 1979, Interstellar Molecule Formation in Grain Mantles: The Laboratory Analog Experiments, Results and Implications, Astrophys. Space Sci. 65, 215–240.

    Google Scholar 

  • Hahn, J.H., Zenobi, R., Bada, J.L., and Zare, R.N.: 1988, Application of Two-step Laser Mass Spectroscopy to Cosmogeochemistry: Direct Analysis of Meteorites, Science 239, 1523–1525.

    Google Scholar 

  • Halbout, J., Robert, F., and Javoy, M.: 1990, Hydrogen and Oxygen Isotope Compositions in Kerogen from the Orgueil Meteorite: Clues to a Solar Origin, Geochim. Cosmochim. Acta 54, 1453-1462.

    Google Scholar 

  • Hartmann, W.K., Tholen, D., and Cruikshank, D.P.: 1987, The Relationship of Active Comets, ‘Extinct’ Comets, and Dark Asteroids, Icarus 69, 33–50.

    Google Scholar 

  • Hayatsu, R. and Anders, E.: 1981, Organic Compounds in Meteorites and Their Origins, Top. Curr. Chem 99, 1–37.

    Google Scholar 

  • Hayes, J.M.: 1967, Organic Constituents of Meteorites, Geochim. Cosmochim. Acta 31, 1395–1440.

    Google Scholar 

  • d'Hendecourt, L.: 1997, The PAH Hypothesis: Infrared Spectroscopic Properties of PAHs, in Y.J. Pendleton, A.G.G.M. Tielens (eds.), From Stardust to Planetesimals, ASP Conference Series 122, USA, pp. 129–145.

  • d'Hendecourt, L. and Ehrenfreund, P.: 1997, Spectroscopic Properties of Polycyclic Aromatic Hydrocarbons (PAHs) and Astrophysical Implications, Adv. Space Res. 19, 1023–1032.

    Google Scholar 

  • Herbst, E.: 1995, Chemistry in the Interstellar Medium, Annu. Rev. Phys. Chem. 46, 27–53.

    Google Scholar 

  • Herbst, E.: 2001, The Chemistry of Interstellar Space, Chem. Soc. Rev. 30, 168-176.

    Google Scholar 

  • Heyns, K., Walter, W., and Meyer, E.: 1957, Modelluntersuchungen zur Bildung Organischer Verbindungen in Atmosphären Einfacher Gase durch Elektrische Entladungen, Naturw. 44, 385–389.

    Google Scholar 

  • Hiroi, T., Pieters, C.M., Zolensky, M.E., and Lipshutz, M.E.: 1993, Evidence for Thermal Metamorphism on the C, G, B, and F Asteroids, Science 261, 1016–1018.

    Google Scholar 

  • Hiroi, T., Zolensky, M.E., Pieters, C.M., Lipschutz, M.E.:1996, Thermal metamorphism of the C, G, B, and F asteroids seen the 0.7 µm, 3 µm, and UV absorption strength in comparison with carbonaceous chondrites, Meteorit. Planet. Sci. 31, 321–327.

    Google Scholar 

  • Hiroi, T., Zolensky, M.E., and Peters, C.M.: 2001, The Tagish Lake Meteorite: A Possible Sample from a D-Type Asteroid, Science 293, 2234–2236.

    Google Scholar 

  • Hodgson, G.W. and Baker, B.L.: 1964, Evidence for Porphyrins in the Orgueil Meteorite, Nature 202, 125–131.

    Google Scholar 

  • Hollis, J.M., Lovas, F.J., and Jewell, P.R.: 2000, Interstellar Glycoaldehyde: The First Sugar, Astrophys. J. 540, L107–L110.

    Google Scholar 

  • Hutt, L.D., Glavin, D.P., Bada, J.L., and Mathies, R.A.: 1999, Microfabricated Capillary Electrophoresis Amino Acid Chirality Analyzed for Extraterrestrial Exploration, Anal. Chem. 71, 4000–4006.

    Google Scholar 

  • Irvine, W.M.: 1998, Extraterrestrial Organic Matter: A Review, Origins Life Evol. Biosphere 28, 365–383.

    Google Scholar 

  • Jewitt, D.C., Matthews, H.E., Owen, T., and Meier, R.: 1997, Measurements of 12C/13C, 14N/15N, and 32S/34S ratios in Comet Hale-Bopp (C/1995 O1), Science 278, 90-93.

    Google Scholar 

  • Jungclaus, G., Cronin, J.R., Moore, C.B., and Yuen, G.U.: 1976a, Aliphatic Amines in Meteorites, Nature 261, 126–128.

    Google Scholar 

  • Jungclaus, G., Yuen, G.U., Moore, C.B., and Lawless, J.G.: 1976b, Evidence for the Presence of Low Molecular Weight Alcohols and Carbonyl Compounds in the Murchison Meteorite, Meteoritics 11, 231–237.

    Google Scholar 

  • Kallemeyn, G.W., Rubin, A.E., and Wasson, J.T.: 1991, The Compositional Classification of Chondrites: V. The Karoonda (CK) Group of Carbonaceous Chondrites, Geochim. Cosmochim. Acta 55, 881–892.

    Google Scholar 

  • Kallemeyn, G.W., Rubin, A.E., Wasson, J.T.: 1991, The Compositional Classification of Chondrites: VI. The CR Carbonaceous Chondrite Group, Geochim. Cosmochim. Acta 58, 2873–2888.

    Google Scholar 

  • Kerridge, J.F.: 1983, Isotopic Composition of Carbonaceous-chondrite Kerogen: Evidence for an Interstellar Origin of Organic Matter in Meteorites, Earth Planet. Sci. Lett. 64, 186-200.

    Google Scholar 

  • Kerridge, J.F., Chang, S., and Shipp, R.: 1987, Isotopic Characterization of Kerogen-like Material in the Murchison Carbonaceous Chondrite, Geochim. Cosmochim. Acta 51, 2527–2540.

    Google Scholar 

  • Kerridge, J.F.: 1999, Formation and Processing of Organics in the Early Solar System, Space Sci. Rev. 90, 275–288.

    Google Scholar 

  • Kessler, M.F., Steinz, J.A., Anderegg, M.E., Clavel, J., Drechsel, G., Estaria, P., Faelker, J., Riedlinger, J.R., Robson, A., Taylor, B.G., and Ximénez de Ferrán, S.: 1996, The Infrared Space Observatory (ISO) Mission, Astron. Astrophys. Lett. 315, L27–L31.

    Google Scholar 

  • Kolodny, Y., Kerridge, J.F., and Kaplan, I.R.: 1980, Deuterium in Carbonaceous Chondrites, Earth Planet. Sci. Lett. 46, 149–158.

    Google Scholar 

  • Kress, M: 2000, New Developments in Inner Solar Nebula Chemistry, in Y.C. Minh and E.F. van Dishoeck (eds.), Astrochemistry: From Molecular Clouds to Planetary Systems, Astronomical Society of the Pacific, San Francisco, CA, USA, pp. 537–547.

    Google Scholar 

  • Kress, M., and Tielens, A.G.G.M.: 2001, The Role of Fischer-Tropsch Catalysis in Solar Nebula Chemistry, Meteorit. Planet. Sci. 36, 75–91.

    Google Scholar 

  • Krishnamurthy, R.V., Epstein, S., Cronin, J.R., Pizzarello, S., and Yuen, G.U.: 1992, Isotopic and Molecular Analyses of Hydrocarbons and Monocarboxylic Acids of the Murchison Meteorite, Geochim. Cosmochim. Acta 56, 4045–4058.

    Google Scholar 

  • Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E: 1985, C60: Buckminsterfullerene, Nature 318, 162–163.

    Google Scholar 

  • Kung, C.C. and Clayton, R.N.: 1978, Nitrogen Abundances and Isotopic Composition in Stony Meteorites, Earth Planet. Sci. Lett. 38, 421–435.

    Google Scholar 

  • Kung, C.C., Hayatsu, R., Studier, M.H., and Clayton, R.N.: 1979, Nitrogen Isotope Fractionation in the Fischer-Tropsch Synthesis and the Miller-Urey Reaction, Earth Planet. Sci. Lett. 46, 141–146.

    Google Scholar 

  • Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I.R., and Moore, C.: 1970, Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteortie, Nature 228, 923–926.

    Google Scholar 

  • Kvenvolden, K.A., Glavin, D.P., and Bada, J.L.: 2000, Extraterrestrial Amino Acid in the Murchison Meteorite: Re-evaluation after Thirty Years, in G.A. Goodfriend, M.J. Collins, M.L. Fogel, S.A. Macko, and J.F. Wehmiller (eds.), Perspectives in Amino Acid and Protein Geochemistry, Oxford University Press, New York, USA, pp. 7–14.

    Google Scholar 

  • Lawless, J.G., Zeitmann, B., Pereira, W.E., Summons, R.E., and Duffield, A.M.: 1974, Dicarboxylic Acids in the Murchison Meteorite, Nature 251, 40–41.

    Google Scholar 

  • Lawless, J.G. and Yuen, G.U.: 1979, Quantification of Monocarboxylic Acids in the Murchison Carbonaceous Meteorite, Nature 282, 396–398.

    Google Scholar 

  • Lerner, N.R., Peterson, E., and Chang, S.: 1993, The Strecker Synthesis as a Source of Amino Acids in Carbonaceous Chondrites: Deuterium Retention During Synthesis, Geochim. Cosmochim. Acta 57, 4713–4723.

    Google Scholar 

  • Lerner, N.R.: 1997, Influence of Allende Minerals on Deuterium Retention of Products of the Strecker Synthesis, Geochim. Cosmochim. Acta 61, 4885–4893.

    Google Scholar 

  • Leshin, L.A., Rubin, A.E., and McKeegan, K.D.: 1997, The Oxygen Isotopic Composition of Olivine and Pyroxene from CI Chondrites, Geochim. Cosmochim. Acta 61, 835–845.

    Google Scholar 

  • Levy, M., Miller, S.L., Brinton, K.L.F., and Bada, J.L.: 2000, Prebiotic Synthesis of Adenine and Amino Acids under Europa-like Conditions, Icarus 145, 609–613.

    Google Scholar 

  • Lodders, K. and Osborne, R.: 1999, Perspectives on the Comet-Asteroid-Meteorite Link, Space Sci. Rev. 90, 289–297.

    Google Scholar 

  • Love, S.G. and Brownlee, D.E.: 1993, A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust, Science 262, 550–553.

    Google Scholar 

  • Luu, L., Jewitt, D., and Cloutis, E.: 1994, Near-Infrared Spectroscopy of Primitive Solar System Objects, Icarus 109, 133–144.

    Google Scholar 

  • Macdougall, J.D., Lugmair, G.W., and Kerridge, J.F.: 1984, Early Solar System Aqueous Activity: Sr Isotope Evidence from the Orgueil CI Meteorite, Nature 307, 249–251.

    Google Scholar 

  • Maurette, M.: 1998, Carbonaceous Micrometeorites and the Origin of Life, Origins Life Evol. Biosphere 28, 385–412.

    Google Scholar 

  • Maurette, M., Dupart, J., Engrand, C., Gounelle, M., Kurat, G., Matrajt, G., and Toppani, A.: 2000, Accretion of Neon, Organics, CO2, Nitrogen andWater from Large Interplanetary Dust Particles on the Early Earth, Planet. Space Sci. 48, 1117–1137.

    Google Scholar 

  • McCord, T.B., Adams, J.B., and Johnson, T.V.: 1977, Asteroid Vesta: Spectral Reflectivity and Compositional Implications, Science 168, 1445–1447.

    Google Scholar 

  • McDonald, G.D., Thompson, W.R., Heinrich, M., Khare, B.N., and Sagan, C.: 1994, Chemical Investigation of Titan and Triton Tholins, Icarus 108, 137–145.

    Google Scholar 

  • McDonald, G.D. and Bada, J.L.: 1995, A Search for Endogenous Amino Acids in the Martian Meteorite EETA79001, Geochim. Cosmochim. Acta 59, 1179–1184.

    Google Scholar 

  • McKay, D.S., Gibson, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R., and Zare, R.N.: 1996, Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001, Science 273, 924–930.

    Google Scholar 

  • McSween, H.Y.: 1979, Are Carbonaceous Chondrites Primitive or Processed? A Review, Rev. Geophys. Space Phys. 17, 1059–1078.

    Google Scholar 

  • McSween, H.Y., Sears, D.W.G., and Dodd, R.T.: 1988, Thermal Metamorphism, in J.F. Kerridge and M.S. Matthews (eds.), Meteorites and the Early Solar System, University of Arizona Press, Tucson, AZ, USA, pp. 102–113.

    Google Scholar 

  • Meier, R., Owen, T.C., Matthews, H.E., Jewitt, D.C., Bockelée-Morvan, D., Biver, N., Crovisier, J., and Gautier, D.: 1998a, A Determination of the HDO/H2O Ratio in Comet C/1995 O1 (Hale-Bopp), Scienc 279, 842–844.

    Google Scholar 

  • Meier, R., Owen, T.C., Jewitt, D.C., Matthews, H.E., Senay, M., Biver, N., Bockelée-Morvan, D., Crovisier, J., and Gautier, D.: 1998b, Deuterium in Comet C/1995 O1 (Hale-Bopp): Detection of DCN, Science 279, 1707–1709.

    Google Scholar 

  • Meinschein, W.G.: 1963, Benzene Extracts of the Orgueil Meteorite, Nature 197, 833–836.

    Google Scholar 

  • Messenger, S., Amari, S., Gao, X., Walker, R.M., Clemett, S.J., Chillier, X.D.F., Zare, R.N., and Lewis, R.S.: 1998, Indigenous Polycyclic Aromatic Hydrocarbons in Circumstellar Graphite Grains form Primitive Meteorites, Astrophys. J. 502, 284–295.

    Google Scholar 

  • Miller, S.L.: 1953, A Production of Amino Acids under Possible Primitive Earth Conditions, Science 117, 528-529.

    Google Scholar 

  • Miller, S.L.: 1955, Production of Some Organic Compounds under Possible Primitive Earth Conditions, J. Am. Chem. Soc. 77, 2351–2361.

    Google Scholar 

  • Miller, S.L.: 1957, The Mechanism of Synthesis of Amino Acids by Electric Discharges, Biochim. Biophys. Acta 23, 480–489.

    Google Scholar 

  • Minh, Y.C. and van Dieshoeck, E.F.: 2000, Astrochemistry: From Molecular Clouds to Planetary Systems, Astronomical Society of the Pacific, San Francisco, CA, USA.

    Google Scholar 

  • Nagy, B.: 1975, Carbonaceous, Elsevier Scientific Publishing, The Netherlands.

    Google Scholar 

  • Naraoka, H., Shimoyama, A., Komiya, M., Yamamoto, H., and Harada, K.: 1988, Hydrocarbons in the Yamato-791198 Carbonaceous Chondrite from Antarctica, Chem. Lett. 831–834.

  • Naraoka, H., Shimoyama, A., and Harada, K.: 2000, Isotopic Evidence from an Antarctic Carbonaceous Chondrite for Two Reaction Pathways of Extraterrestrial PAH Formation, Earth Planet. Sci. Lett. 184, 1–7.

    Google Scholar 

  • Orò, J., Updegrove, W.S., and Flory, D.A.: 1969, Isotopic Carbon Analysis of Meteoritic Organic Matter, NASA Contract Rep. (1968), NASA-CR-103427, 59, from: Sci. Tech. Aerosp. Rep. 7, 3319.

    Google Scholar 

  • Orton, G.S., Lacy, J.H., Achtermann, J.M., Parmar, P., and Blass, W.E.: 1992, Thermal Spectroscopy of Neptune: The Stratospheric Temperature, Hydrocarbon Abundances, and Isotopic Ratios, Icarus 100, 541–555.

    Google Scholar 

  • Owen, T., Biemann, K., Rushneck, D.R., Biller, J.E., Howarth, D.W., and Lafleur, A.L.: 1977, The Composition of the Atmosphere at the Surface of Mars, J. Geophys. Res. 82, 4635–4639.

    Google Scholar 

  • Owen, T., Cruikshank, D., de Bergh, C., and Gaballe, T.: 1994, Dark Matter in the Outer Solar System, Adv. Space Res. 16, (2)41–(2)49.

    Google Scholar 

  • Peltzer, E.T. and Bada, J.L.: 1978, α-Hydroxycarboxylic Acids in the Murchison Meteorite, Nature 272, 443–444.

    Google Scholar 

  • Peltzer, E.T., Bada, J.L., Schlesinger, G., and Miller, S.L.: 1984, The Chemical Conditions on the Parent Body of the Murchison Meteorite: Some Conclusions Based on Amino, Hydroxy, and Dicarboxylic Acids, Adv. Space Sci. 4, 69–74.

    Google Scholar 

  • Pendleton, Y.J.: 1997, The Nature and Evolution of Interstellar Organics, in Y.J. Pendleton and A.G.G.M. Thielens (eds.), From Stardust to Planetesimals, ASP Conference Series 122, USA, pp. 179–200.

  • Pierazzo E. and Chyba, C.F.: 1999, Amino Acid Survival in Large Cometary Impacts, Meteorit. Planet. Sci. 34, 909–918.

    Google Scholar 

  • Pizzarello, S., Krishnamurthy, R.V., Epstein, S., and Cronin, J.R.: 1991, Isotopic Analyses of Amino Acids from the Murchison Meteorite, Geochim. Cosmochim. Acta 55, 905–910.

    Google Scholar 

  • Pizzarello, S., Feng, X., Epstein, S., and Cronin, J.R.: 1994, Isotopic Analyses of Nitrogenous Compounds from the Murchison Meteorite: Ammonia, Amines, Amino Acids, and Polar Hydrocarbons, Geochim. Cosmochim. Acta 58, 5579–5587.

    Google Scholar 

  • Pizzarello, S. and Cronin, J.R.: 1998, Alanine Enantiomers in the Murchison Meteorite, Nature 394, 236.

    Google Scholar 

  • Pizzarello, S., and Cronin, J.R.: 2000, Non-racemic Amino Acids in the Murray and Murchison Meteorites, Geochim. Cosmochim. Acta 64, 329–338.

    Google Scholar 

  • Rikken, G.L.J.A. and Raupach, E.: 2000, Enantioselective Magnetochiral Photochemistry, Nature 405, 932–935.

    Google Scholar 

  • Robert, F. and Epstein, S.: 1982, The Concentration and Isotopic Composition of Hydrogen, Carbon and Nitrogen in Carbonaceous Chondrites, Geochim. Cosmochim. Acta 46, 81–95.

    Google Scholar 

  • Robl, T.L. and Davis, B.H.: 1993, Comparison of the HF-HCl and HF-BF3 Maceration Techniques and the Chemistry of Resultant Organic Concentrates, Org. Geochem. 20, 249–255.

    Google Scholar 

  • Sagan, C., Thompson, W.R., and Khare, B.N.: 1992, Titan: A Laboratory for Prebiological Organic Chemistry, Acc. Chem. Res. 25, 286–292.

    Google Scholar 

  • Sagan, C., Khare, B.N., Thompson, W.R., McDonald, G.D., Wing, M.R., Bada, J.L., Vo-Dinh, T., and Arakawa, E.T,: 1993, Polycyclic Aromatic Hydrocarbons in the Atmospheres of Titan and Jupiter, Astrophys. J. 414, 399–405.

    Google Scholar 

  • Sandford, S.A., Allamandola, L.J., and Bernstein, M. P.: 1997, The Composition and Ultraviolet and Thermal Processing of Interstellar Ices, in Y.J. Pendleton and A.G.G.M. Thielens (eds.), From Stardust to Planetesimals, ASP Conference Series 122, USA, pp. 201–213.

  • Sandford, S.A., Bernstein, M.P., Allamandola, L.J., Gillette, J.S., and Zare, R.N.: 2000, Deuterium Enrichments of Polycyclic Aromatic Hydrocarbons by Photochemically Induced Exchange with Deuterium-rich Cosmic Ices, Astrophys. J. 538, 691–697.

    Google Scholar 

  • Salama, F., Galazutdinov, G.A., Krelowski, J., Allamandola, L.J., and Musaev, F.A.: XXXX, Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: A Survey, Astrophys. J. 526, 265–273.

  • Schidlowski, M.: 2000, Carbon Isotopes as Biogeochemical Recorders of Life over 3.8 Ga of Earth History: Evolution of a Concept, Precambrian Res., in press.

  • Sears, D.W.G. and Dodd, R.T.: 1988, Overview and Classification of Meteorites, in J.F. Kerridge and M.S. Matthews (eds.), Meteorites and the Early Solar System, University of Arizona Press, Tucson, AZ, USA, pp. 3–31.

    Google Scholar 

  • Sears, D.: 1997, The Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites, Houston, Texas, 1996 October 16-18, Meteorit. Planet. Sci. 32, 3.

    Google Scholar 

  • Sephton, M. A., Pillinger, C.T., and Gilmour, I.: 1998, δ13C of Free and Macromolecular Aromatic Structures in the Murchison Meteorite, Geochim. Cosmochim. Acta 62, 1821–1828.

    Google Scholar 

  • Septhon, M.A., Pillinger, C.T., Gilmour, I.: 1999, Investigating the Constitution of Macromolecular Material in Meteorites Using Hydrous Pyrolysis, ACS, Div. Fuel Chem. Preprints 44, 368–372.

    Google Scholar 

  • Sephton, M.A., Pillinger, C.T., and Gilmour, I.: 2000, Aromatic Moieties in Meteoritic Macromolecular Materials: Analyses by Hydrous Pyrolysis and δ13C of Individual Compounds, Geochim. Cosmochim. Acta 64, 321–328.

    Google Scholar 

  • Sephton, M.A. and Gilmour, I.: 2000, Aromatic Moieties in Meteorites: Relics of Interstellar Grain Processes?, Astrophys. J. 540, 588–591.

    Google Scholar 

  • Sephton, M.A., Pillinger, C.T., and Gilmour, I.: 2001, Normal Alkanes in Meteorites: Molecular δ13C Values Indicate an Origin by Terrestrial Contamination', Precambrian Res. 106, 47–58.

    Google Scholar 

  • Shimoyama, A., Harada, K., and Yanai, K.: 1985, Amino Acids from the Yamato-791198 Carbonaceous Chondrite from Antarctica, Chem. Lett. 1183–1186.

  • Shimoyama, A., Naraoka, H., Komiya, M., and Harada, K.: 1989, Analyses of Carboxylic Acids and Hydrocarbons in Antarctic Carbonaceous Chondrites, Yamato-74662 and Yamato-793321, Geochem. J. 23, 181–193.

    Google Scholar 

  • Simons, S.S., Jr. and Johnson, D.F.: XXXX, Reaction of o-Phthaldialdehyde and Thiols with Primary Amines: Formation of 1-Alkyl(and aryl)thio-2-alkylisoindoles, J. Org. Chem. 43, 2886–2891.

  • Smith, D.: 1992, The Ion Chemistry of Interstellar Clouds, Chem. Rev. 92, 1473–1485.

    Google Scholar 

  • Smith, J.W. and Kaplan, I.R.: 1970, Endogenous Carbon in Carbonaceous Meteorites, Science 167, 1367–1370.

    Google Scholar 

  • Stoks, P.G. and Schwartz, A.W.: 1979, Uracil in Carbonaceous Chondrites, Nature 282, 709–710.

    Google Scholar 

  • Stoks, P.G. and Schwartz, A.W.: 1981, Nitrogen-heterocyclic Compounds in Meteorites: Significance and Mechanisms of Formation, Geochim. Cosmochim. Acta 45, 563-569.

    Google Scholar 

  • Stoks, P.G. and Schwartz, A.W.: 1982, Basic Nitrogen-heterocyclic Compounds in the Murchison Meteorite, Geochim. Cosmochim. Acta 46, 309–315.

    Google Scholar 

  • Strecker, A.: 1850, Ñber die künstliche Bildung der Milchsäure und einem neuen dem Glycocoll homologen Körper, Ann. Chem. 75, 27.

    Google Scholar 

  • Swart, P.K., Grady, M.M., Pillinger, C.T., Lewis, R.S., and Anders, E.: 1983, Interstellar Carbon in Meteorites, Science 220, 406–410.

    Google Scholar 

  • Taylor, F.W. and Coustenis, A.: 1998, Titan in the Solar System, Planet. Space Sci. 46, 1085–1097.

    Google Scholar 

  • Teixeira, T.C., Devlin, J.P., Buch, V., and Emerson, J.P.: 1999, Discovery of Solid HDO in Grain Mantles, Astron. Astrophys. 347, L19–L22.

    Google Scholar 

  • Thénard, L.J.: 1806, Analyse d'un aérolith tombée dans l'arrondissement d'Alais, le 15 Mars, 1806, Ann. Chim. Phys. 59, 103–110.

    Google Scholar 

  • Tielens, A.G.G.M. and Charnley, S.B.: 1997, Circumstellar and Interstellar Synthesis of Organic Molecules, Origins Life Evol. Biosphere 27, 23-51.

    Google Scholar 

  • Tielens, A.G.G.M., Honey, S., van Kerckhoven, C., and Peeters, E.: 1999, Interstellar and Circumstellar PAHs, in The Universe as seen by ISO, ESA SP-427, pp. 579–587.

  • Urey, H.C.: 1962, Life Forms in Meteorites, Nature 193, 1119–1125.

    Google Scholar 

  • Van der Velden, W. and Schwartz, A.W.: 1977, Search for Purines and Pyrimidines in the Murchison Meteorites, Geochim. Cosmochim. Acta 41, 961–968.

    Google Scholar 

  • Van Schmus, W.R. and Hayes, J.M.: 1974, Chemical and Petrographic Correlations among Carbonaceous Chondrites, Geochim. Cosmochim. Acta 38, 47–64.

    Google Scholar 

  • Weisberg, M.K., Prinz, M., Clayton, R.N., and Mayeda, T.K.: 1993, The CR (Renazzo-type) carbonaceous chondrite group and its implications, Geochim. Cosmochim. Acta 57, 1567–1586.

    Google Scholar 

  • Wetherill, G.W. and ReVelle D.O.: 1982, Relationships between Comets, Large Meteors, and Meteorites, in L.L. Wilkening (ed.), Comets, University of Arizona Press, Tucson, AZ, USA, pp. 297–319.

    Google Scholar 

  • Wetherill, G.W.: 1985, Asteroidal Source of Ordinary Chondrites, Meteoritics 20, 1–22.

    Google Scholar 

  • Wing, M.R. and Bada, J.L.: 1991, Geochromatography on the Parent Body of the Carbonaceous Chondrite Ivuna, Geochim. Cosmochim. Acta 55 2937–2942.

    Google Scholar 

  • Wing, M.R. and Bada, J.L.: 1992, The Origin of the Polycyclic Aromatic Hydrocarbons in Meteorites, Origins Life Evol. Biosphere 21, 375–383.

    Google Scholar 

  • Wolman, Y., Miller, S.L., Ibanez, J., and Oró, J.: 1971, Formaldehyde and

  • Wolman, Y., Haverland, W.J., and Miller, S.L.: 1972, Nonprotein Amino Acids from Spark Discharges and Their Comparison with the Murchison Meteorite Amino Acids, Proc. Nat. Acad. Sci. USA 69, 809–811.

    Google Scholar 

  • Woolum, D.S. and Cassen, P.: 1999, Astronomical Constraints on Nebular Temperatures: Implications for Planetesimal Formation, Meteorit. Planet. Sci. 34, 897-907.

    Google Scholar 

  • Yeomans, D.: 2000, Small Bodies of the Solar System, Nature 404, 829–832.

    Google Scholar 

  • Yuen, G.U. and Kvenvolden, K.A.: 1973, Monocarboxylic Acids in Murray and Murchison Carbonaceous Chondrites, Nature 246, 301–302.

    Google Scholar 

  • Yuen, G.U., Blair, N., DesMarais, D.J., and Chang, S.: 1984, Carbon Isotope Composition of Low Molecular Weight Hydrocarbons and Monocarboxylic Acids form the Murchison Meteorite, Nature 307, 252–254.

    Google Scholar 

  • Zenobi, R., Philippoz, J.-M., Zare, R.N., Wing, M.R., Bada, J.L., and Marti, K: 1992, Organic Compounds in the Forest Vale, H4 Ordinary Chondrite, Geochim. Cosmochim. Acta 56, 2899–2905.

    Google Scholar 

  • Zhao, M. and Bada, J.L.: 1989, Extraterrestrial Amino Acids in Cretaceous/Tertiary Boundary Sediments at Stevns Klint, Denmark, Nature 339, 463–465.

    Google Scholar 

  • Zhao, M. and Bada, J.L.: 1995, Determination of α-Dialkylamino Acids and Their Enantiomers in Geological Samples by High-Performance Liquid Chromatography after Derivatization with Chiral Adduct of o-Phthaldialdehyde, J. Chromatogr. A. 690, 55–63.

    Google Scholar 

  • Zinner, E.: 1988, Interstellar Cloud Material in Meteorites, in J.F. Kerridge and M.S. Matthews (eds.), Meteorites and the Early Solar System, University of Arizona Press, Tuscon, AZ, USA, pp. 956–983.

    Google Scholar 

  • Zolensky, M, and McSween, H.Y.: 1988, Aqueous Alteration, in J.F. Kerridge, M.S. Matthews (eds.), Meteorites and the Early Solar System, University of Arizona Press, Tucson, AZ, USA, pp. 114–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botta, O., Bada, J.L. Extraterrestrial Organic Compounds in Meteorites. Surveys in Geophysics 23, 411–467 (2002). https://doi.org/10.1023/A:1020139302770

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020139302770

Navigation