Skip to main content

Advertisement

Log in

Electronic applications of flexible graphite

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Flexible graphite is effective for electronic applications, specifically electromagnetic interference (EMI) gasketing, resistive heating, thermoelectric-energy generation, and heat dissipation. It is comparable to or better than conductive-filled silicone materials for EMI gasketing. The shielding effectiveness reaches 125 dB. Flexible graphite as a heating element provides temperatures up to 980°C, response half-time down to 4 sec, and heat output at 60 sec up to 5600 J. The through-thickness, absolute thermoelectric power of flexible graphite is −2.6 µV/°C. Flexible graphite is effective as a thermal-interface material if the thickness is low (0.13 mm), the density is low (1.1 g/cm3), and the contact pressure is high (11.1 MPa). These applications make use of the flexibility and compliance of flexible graphite, in addition to its electronic and thermal behavior. Compliance is particularly important for the use of flexible graphite as interface materials, whether the interface is electrom agnetic, thermoelectric, or thermal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.D.L. Chung, J. Mater. Eng. Perform. 9, 161 (2000).

    Article  CAS  Google Scholar 

  2. X. Luo and D.D.L. Chung, Carbon 34, 1293 (1996).

    Article  CAS  Google Scholar 

  3. M. Toyoda, J. Aizawa, and M. Inagaki, Desalination 115, 199 (1998).

    Article  CAS  Google Scholar 

  4. N.N. Avgul’, N.V. Kovaleva, I.L. Mar’yasin, and G.A. Mishina, Coll. J. USSR (English translation of Koll. Z) 44, 274 (1982).

    Google Scholar 

  5. L.C. Olsen, S.E. Seeman, and H.W. Scott, Carbon, 8, 85 (1970).

    Article  CAS  Google Scholar 

  6. D.D.L. Chung and L.W. Wong, Synth. Met. 12, 533 (1985).

    Article  CAS  Google Scholar 

  7. M. Rommler, Am. Soc. Mech. Eng., Pressure Vessels Piping Div. 382, 37 (1999).

    Google Scholar 

  8. M. Derenne, L. Marchand, and J.R. Payne, Materials Manufacturing Proc. 1996, 8th Int. Conf. Pressure Vessel Technology, ICPVT, vol. 1 (New York: ASME, 1996), p. 125.

    Google Scholar 

  9. W.F. Jones and B.B. Seth, J. Test. Eval. 21, 94 (1993).

    CAS  Google Scholar 

  10. A. Bazergui and J.R. Winter, Am. Soc. Mech. Eng., Pressure Vessels Piping Div. 158, 33 (1989).

    Google Scholar 

  11. M. Derenne, L. Marchand, and J.R. Payne, Welding Res. Council Bull. 419, 1 (1997).

    Google Scholar 

  12. X. Luo and D.D.L. Chung, Carbon 38, 1510 (2000).

    Article  CAS  Google Scholar 

  13. C.A. Frysz and D.D.L. Chung, Carbon 35, 858 (1997).

    Article  CAS  Google Scholar 

  14. X. Luo and D.D.L. Chung, J. Intelligent Mater. Sys. Struct. 8, 389 (1997).

    Article  CAS  Google Scholar 

  15. R. Bates, S. Spence, J. Rowan, and J. Hanrahan, 8th Int. Conf. Electromagnetic Compatibility (London: Institution of Electrical Engineers, 1992), p. 246.

    Google Scholar 

  16. J.A. Catrysse, 8th Int. Conf. Electromagnetic Compatibility (London: Institution of Electrical Engineers, 1992), p. 251.

    Google Scholar 

  17. J. Wang, V.V. Varadan, and V.K. Varadan, SAMPE J. 32, 18 (1996).

    Google Scholar 

  18. S. Maudgal and S. Sankaran, Proc. Nat. Conf., ed. O.P. Bahl (Delhi, India: Shipra Publ., 1997), p. 12.

    Google Scholar 

  19. J.T. Hoback and J.J. Reilly, J. Elastomers Plast. 20, 54 (1988).

    Article  CAS  Google Scholar 

  20. P. O’Shea, Eval. Eng. 34, 84 (1995).

    Google Scholar 

  21. R.A. Rothenberg, D.C., Inman, and Y. Itani, IEEE Int. Symp. Electromagnetic Compatibility (Piscataway, NJ: IEEE, 1994), p. 818.

    Google Scholar 

  22. P. O’Shea, Eval. Eng. 35, 56 (1996).

    Google Scholar 

  23. J.W.M. Child, Electron. Prod. Oct., 41, (1986).

  24. A.K. Subramanian, D.C. Pande, and K. Boaz, Proc. 1995 Int. Conf. Electromagnetic Interference Compatibility (Madras, India: Society of EMC Engineers, 1995), p. 139.

    Book  Google Scholar 

  25. W. Hoge, Eval. Eng. 34, 84 (1995).

    Google Scholar 

  26. J.F. Walther, IEEE 1989 Int. Symp. Electromagnetic Compatibility: Symp. Record (New York: IEEE, 1989), p. 40.

    Google Scholar 

  27. H.W. Denny and K.R. Shouse, IEEE 1990 Int. Symp. Electromagnetic Compatibility: Symp. Record (New York: IEEE, 1990), p. 20.

    Google Scholar 

  28. A.N. Faught, IEEE Int. Symp. Electromagnetic Compatibility (New York: IEEE, 1982), p. 38.

    Google Scholar 

  29. G. Kunkel, IEEE Int. Symp. Electromagnetic Compatibility (New York: IEEE, 1980), p. 211.

    Google Scholar 

  30. R.E. Rapp, L.D. Dillon, and H. Godfrin, Cryogenics 25, 152 (1985).

    Article  CAS  Google Scholar 

  31. Y. Hishiyama, Y. Kaburagi, and K. Sugihara, Mol. Cryst. Liq. Cryst. 340, 337 (2000).

    CAS  Google Scholar 

  32. K.H. Hsu, J.R. Payne, and M. Derenne, Proc. 1993 Pressure Vessels Piping Conf. on Power Plant Equipment Design: Bolted Joints, Pumps, Valves, Pipe Duct Supports (New York, NY: American Society of Mechanical Engineers, 1993), vol. 255, p. 65.

    Google Scholar 

  33. M. Asahina, T. Nishida, and Y. Yamanaka, Proc. 1996 ASME Pressure Vessels Piping Conf. Computer Technology-Applied Methodology (New York, NY: American Society of Mechanical Engineers, 1996), vol. 326, p. 47.

    Google Scholar 

  34. W.D. Callister, Jr., Materials Science and Engineering, 5th ed. (New York: John Wiley and Sons, Inc., 2001), p. 811.

    Google Scholar 

  35. M. Kambe, Mater. Sci. Forum 308–311, 653 (1999).

    Article  Google Scholar 

  36. M. Arai, M. Kambe, T. Ogata, and Y. Takahashi, Nippon Kikai Gakkai Ronbunshu, a Hen 62, 488 (1996).

    Google Scholar 

  37. C. Uher, Phys. Rev. B 25, 4167 (1982).

    Article  CAS  Google Scholar 

  38. R.B. Roberts, CODATA Bull. 59, 47 (1985).

    Google Scholar 

  39. Y. Hishiyama and A. Ono, Carbon 23, 445 (1985).

    Article  CAS  Google Scholar 

  40. Y. Kaburagi and Y. Hishiyama, Carbon 36, 1671 (1998).

    Article  CAS  Google Scholar 

  41. A. Ono and Y. Hishiyama, Philos. Mag. B 59, 271 (1989).

    CAS  Google Scholar 

  42. J.P. Heremans, Extended Abstracts and Program—17th Biennial Conf. on Carbon (University Park, PA: American Carbon Society, 1985), pp. 231–232.

    Google Scholar 

  43. J. Tsukamoto, A. Takahashi, T. Tani, and T. Ishiguro, Carbon 27, 919 (1989).

    Article  CAS  Google Scholar 

  44. C. Uher and D.T. Morelli, Synth. Met. 12, 91 (1985); Graphite Intercalation Compounds, Proc. Int. Symp. (1985), pp. 91–96.

    Article  CAS  Google Scholar 

  45. K. Kobayashi, K. Sugihara, and H. Oshima, J. Phys. Chem. Solids 57, 931 (1996).

    Article  CAS  Google Scholar 

  46. D.D.L. Chung, J. Mater. Eng. Perform. 10, 56 (2001).

    Article  CAS  Google Scholar 

  47. X. Luo and D.D.L. Chung, Int. J. Microcir. Electron. Packag. 24, 141 (2001).

    CAS  Google Scholar 

  48. D. Grivas, D. Frear, L. Quan, and J.W. Morris, Jr., J. Electron. Mater. 15, 355 (1986).

    CAS  Google Scholar 

  49. S.W. Wilson, A.W. Norris, E.B. Scott, and M.R. Costello, Proc. Technical Program, Nat. Electronic Packaging Production Conf. (Norwalk, CT: Reed Exhibition Companies, 1996), vol. 2, p. 788.

    Google Scholar 

  50. A.L. Peterson, Proc. 40th Electronic Components Technology Conf. (Piscataway, NJ: IEEE, 1990), vol. 1, p. 613.

    Book  Google Scholar 

  51. X. Lu, G. Xu, P.G. Hofstra, and R.C. Bajcar, J. Polym. Sci., Part B: Polym. Phys. 36, 2259 (1998).

    Article  CAS  Google Scholar 

  52. T. Sasaski, K. Hisano, T. Sakamoto, S. Monma, Y. Fijimori, H. Iwasaki, and M. Ishizuka, Japan IEMT Symp. Proc., IEEE/CPMT Int. Electronic Manufacturing Technology (IEMT) Symp. (Piscataway, NJ: IEEE, 1995), p. 236.

    Google Scholar 

  53. Y. Xu, X. Luo, and D.D.L. Chung, J. Electron. Packaging 122, 128 (2000).

    Article  CAS  Google Scholar 

  54. Y. Xu, X. Luo, and D.D.L. Chung, J. Electron. Packaging, in press.

  55. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, J. Appl. Phys. 32, 1679 (1961).

    Article  CAS  Google Scholar 

  56. K. Inoue and E. Ohmura, Yosetsu Gakkai Ronbunshu/Q. J. Jpn. Welding Soc. 6, 130 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, X., Chugh, R., Biller, B.C. et al. Electronic applications of flexible graphite. J. Electron. Mater. 31, 535–544 (2002). https://doi.org/10.1007/s11664-002-0111-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-002-0111-x

Key words

Navigation