Skip to main content
Log in

Herbivore-Induced Volatile Production by Arabidopsis thaliana Leads to Attraction of the Parasitoid Cotesia rubecula: Chemical, Behavioral, and Gene-Expression Analysis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Many plant species defend themselves against herbivorous insects indirectly by producing volatiles in response to herbivory. These volatiles attract carnivorous enemies of the herbivores. Research on the model plant Arabidopsis thaliana (L.) Heynh. has contributed considerably to the unraveling of signal transduction pathways involved in direct plant defense mechanisms against pathogens. Here, we demonstrate that Arabidopsis is also a good candidate for studying signal transduction pathways involved in indirect defense mechanisms by showing that: (1) Adult females of Cotesia rubecula, a specialist parasitic wasp of Pieris rapae caterpillars, are attracted to P. rapae-infested Arabidopsis plants. (2) Arabidopsis infested by P. rapae emits volatiles from several major biosynthetic pathways, including terpenoids and green leaf volatiles. The blends from herbivore-infested and artificially damaged plants are similar. However, differences can be found with respect to a few components of the blend, such as two nitriles and the monoterpene myrcene, that were produced exclusively by caterpillar-infested plants, and methyl salicylate, that was produced in larger amounts by caterpillar-infested plants. (3) Genes from major biosynthetic pathways involved in volatile production are induced by caterpillar feeding. These include AtTPS10, encoding a terpene synthase involved in myrcene production, AtPAL1, encoding phenylalanine ammonia-lyase involved in methyl salicylate production, and AtLOX2 and AtHPL, encoding lipoxygenase and hydroperoxide lyase, respectively, both involved in the production of green leaf volatiles. AtAOS, encoding allene oxide synthase, involved in the production of jasmonic acid, also was induced by herbivory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • AGELOPOULOS, N. G. and KELLER, M. A. 1994. Plant-natural enemy association in the tritrophic system, Cotesia rubecula-Pieris rapae-Brassicaceae (Crucifera): II. Preference of C. rubecula for landing and searching. J. Chem. Ecol. 20:1735-1748.

    Google Scholar 

  • BATE, N. J., SIVASANKAR, S., MOXON, C., RILEY, J. M. C., THOMPSON, J. E., and ROTHSTEIN, S. J. 1998. Molecular characterization of an Arabidopsis gene encoding hydroperoxide lyase, a cytochrome P-450 that is wound inducible. Plant Physiol. 117:1393-1400.

    PubMed  Google Scholar 

  • BELL, E. and MULLET, J. E. 1993. Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol. 103:1133-1137.

    PubMed  Google Scholar 

  • BLAAKMEER, A., GEERVLIET, J. B. F., LOON, J. J. A., POSTHUMUS, M. A., VAN BEEK, T. A., and DE GROOT, A. E. 1994. Comparative headspace analysis of cabbage plants damaged by two species of Pieris caterpillars: Consequences for in-flight host location by Cotesia parasitoids. Entomol. Exp. Appl. 73:175-182.

    Google Scholar 

  • BLECHERT, S., BRODSCHELM, W., HOLDER, S., KAMMERER, L., KUTCHAN, T. M., MUELLER, M. J., XIA, Z. Q., and ZENK, M. H. 1995. The octadecanoic pathway: Signal molecules for the regulation of secondary pathways. Proc. Natl. Acad. Sci. USA 92:4099-4105.

    PubMed  Google Scholar 

  • BOHLMANN, F., ZDERO, C., BERGER, D., SUWITA, A., MAHANTA, P., and JEFFREY, C. 1979. Neue furanoeremophilane und weitere inhaltsstoffe aus Südafrikanischen Senecio-arten. Phytochemistry 18:79-93.

    Google Scholar 

  • BOHLMANN, J., MEYER-GAUEN, G., and CROTEAU, R. 1998. Plant terpenoid synthases: Molecular biology and phylogenetic analysis. Proc. Natl. Acad. Sci. USA 95:4126-4133.

    PubMed  Google Scholar 

  • BOHLMANN, J., MARTIN, D., OLDHAM, N. J., and GERSHENZON, J. 2000. Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization and functional expression of a myrcene/ocimene synthase. Arch. Biochem. Biophys. 375:261-269.

    PubMed  Google Scholar 

  • BOLAND, W. 1995. The chemistry of gamete attraction: Chemical structures, biosynthesis, and (a)biotic degradation of algal pheromones. Proc. Natl. Acad. Sci. USA 92:37-43.

    PubMed  Google Scholar 

  • BOLAND, W., HOPKE, J., DONATH, J., NüSKE, J., and BUBLITZ, F. 1995. Jasmonic acid and coronatin induce odor production in plants. Angew. Chem. Int. Ed. Engl. 34:1600-1602.

    Google Scholar 

  • BOLAND W., KOCH, T., KRUMM, T., PIEL, J., and JUX, A. 1999. Induced biosynthesis of insect semiochemicals in plants, pp. 110-131, in D. J. Chadwick and J. A. Goode (eds.). Insect-Plant Interactions and Induced Plant Defense. John Wiley & Sons, New York.

    Google Scholar 

  • BOUWMEESTER, H. J., VERSTAPPEN, F. W. A., POSTHUMUS, M. A., and DICKE, M. 1999. Spider miteinduced (3S)-(E)-neridol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis. Plant Physiol. 121:173-180.

    PubMed  Google Scholar 

  • CHANG, S., PURYEAR, J., and CAIRNEY, J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11:113-116.

    Google Scholar 

  • CHURCH, G. and GILBERT, W. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 92:4114-4119.

    Google Scholar 

  • DELANEY, T. P., UKNES, S., VERNOOIJ, B., FRIEDRICH, L., WEYMANN, K., NEGROTTO, D., GAFFNEY, T., GUTRELLA, M., KESSMANN, H., WARD, E., and RYALS, J. 1994. A central role of salicylic acid in plant disease resistance. Science 266:1247-1250.

    Google Scholar 

  • DEMPSEY, D. A., SHAH, J., and KLESSIG, D. F. 1999. Salicylic acid and disease resistance in plants. Crit. Rev. Plant Sci. 18:547-575.

    Google Scholar 

  • DICKE, M. 1999. Evolution of induced indirect defense of plants, pp. 62-88, in R. Tollrian and C. J. Harvell (eds.). The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • DICKE, M., VAN BEEK, T. A., POSTHUMUS, M. A., BEN DOM, N., VAN BOKHOVEN, H., and DE GROOT, A. E. 1990. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions. Involvement of host plant in its production. J. Chem. Ecol. 16:381-396.

    Google Scholar 

  • DICKE, M., TAKABAYASHI, J., POSTHUMUS, M. A., SCHUTTE, C., and KRIPS, O. E. 1998. Plant-phytoseiid interactions mediated by herbivore-induced plant volatiles: Variation in production of cues and in response of predatory mites. Exp. Appl. Acar. 22:311-333.

    Google Scholar 

  • DICKE, M., GOLS, R., LUDEKING, D., and POSTHUMUS, M. A. 1999. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in Lima bean plants. J. Chem. Ecol. 25:1907-1922.

    Google Scholar 

  • DIETRICH, R. A., DELANEY, T. P., UKNES, S. J., WARD, E. R., RYALS, J. A., and DANGL, J. L. 1994. Arabidopsis mutants simulating disease resistance response. Cell 77:565-577.

    PubMed  Google Scholar 

  • DIXON, R. A. and PAIVA, N. L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085-1097.

    PubMed  Google Scholar 

  • GEERVLIET, J. B. F., VET, L. E. M., and DICKE, M. 1994. Volatiles from damaged plants as major cues in long-range host-searching by the specialist parasitoid Cotesia rubecula. Entomol. Exp. Appl. 73:289-297.

    Google Scholar 

  • GEERVLIET, J. B. F., POSTHUMUS, M. A., VET, L. E. M., and DICKE, M. 1997. Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. J. Chem. Ecol. 23:2935-2954.

    Google Scholar 

  • GERSHENZON, J. and CROTEAU, R. 1991. Terpenoids, pp. 165-219, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, Vol. 1. Academic Press, New York.

    Google Scholar 

  • GOLS, R., POSTHUMUS, M. A., and DICKE, M. 1999. Jasmonic acid induces the production of gerbera volatiles that attract the biological control agent Phytoseiulus persimilis. Entomol. Exp. Appl. 93:77-86.

    Google Scholar 

  • GRANT-PETERSSON, J. and RENWICK, J. A. A. 1996. Effects of ultraviolet-B exposure of Arabidopsis thaliana on herbivory by two crucifer-feeding insects (Lepidoptera). Environ. Entomol. 25:135-142.

    Google Scholar 

  • HOPKE, J., DONATH, J., BLECHERT, S., and BOLAND, W. 1994. Herbivore-induced volatiles: The emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a β-glucosidase and jasmonic acid. FEBS Lett. 352:146-150.

    PubMed  Google Scholar 

  • KARBAN, R. and BALDWIN, I. T. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • LAUDERT, D., PFANNSCHMIDT, U., LOTTSPEICH, F., HOLLäNDER-CZYTKO, H., and WEILER, E. W. 1996. Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Mol. Biol. 31:323-335.

    PubMed  Google Scholar 

  • LEE, H. L., LéON, J., and RASKIN, I. 1995. Biosynthesis and metabolism of salicylic acid. Proc. Natl. Acad. Sci. USA 92:4076-4079.

    PubMed  Google Scholar 

  • LICHTENTHALER, H.K. 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 50:47-65.

    PubMed  Google Scholar 

  • LOUGHRIN, J. H., MANUKIAN, A., HEATH, R. R., TURLINGS, T. C. J., and TUMLINSON, J. H. 1994. Diurnal cycle of emission of induced volatile terpenoids herbivore-injured cotton plants. Proc. Natl. Acad. Sci. USA 91:11836-11840.

    Google Scholar 

  • MATTIACCI, L., DICKE, M., and POSTHUMUS, M. A. 1995. β-Glucosidase: An elicitor of herbivoreinduced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. USA 92:2036-2040.

    PubMed  Google Scholar 

  • MAUCH-MANI, B. and SLUSARENKO, A. J. 1996. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203-212.

    PubMed  Google Scholar 

  • MAURICIO, R. 1998. Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am. Nat. 151:20-28.

    Google Scholar 

  • MAURICIO, R. and RAUSHER, M. D. 1997. Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 5:1435-1444.

    Google Scholar 

  • MIZUTANI, M., OHTA, D., and SATO, R. 1997. Isolation of a cDNA and a genomic clone encoding cinnamate-4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiol. 113:755-763.

    PubMed  Google Scholar 

  • MCCLOUD, E. S. and BALDWIN, I. T. 1997. Herbivory and caterpillar regurgitants amplify the woundinduced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203:430-435.

    Google Scholar 

  • MCCONN, M., CREELMAN, R. A., BELL, E., MULLET, J. E., and BROWSE, J. 1997. Jamonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 94:5473-5477.

    PubMed  Google Scholar 

  • OHL, S., HEDRICK, S. A., CHORY, J., and LAMB, J. C. 1990. Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell 2:837-848.

    Article  PubMed  Google Scholar 

  • PARé, P. W. and TUMLINSON, J. H. 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114:1161-1167.

    PubMed  Google Scholar 

  • PIETERSE, C. M. J. and VAN LOON, L. C. 1999. Salicylic acid-independent plant defence pathways. Trends Plant Sci. 4:52-58.

    PubMed  Google Scholar 

  • PIETERSE, C. M. J., VAN WEES, S. C. M., VAN PELT, J. A., KNOESTER, M., LAAN, R., GERRITS, H., WEISBEEK, P. J., and VAN LOON, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580.

    PubMed  Google Scholar 

  • REYMOND, P., WEBER, H., DAMOND, M., and FARMER, E. E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707-719.

    PubMed  Google Scholar 

  • SAMBROOK, J., FRITSCH, E. F., and MANIATIS, T. 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • STOTZ, H. U., PITTENDRIGH, B. R., KROYMANN, J., WENIGER, K., FRITSCHE, J., BAUIKE, A., and MITCHELL-OLDS, T. 2000. Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol. 124:1007-1017.

    PubMed  Google Scholar 

  • TAKABAYASHI, J., DICKE, M., and POSTHUMUS, M. A. 1991. Variation in composition of predatorattracting allelochemicals emitted by herbivore-infested plants: Relative influence of plant and herbivore. Chemoecology 2:1-6.

    Google Scholar 

  • TAKABAYASHI, J., DICKE, M., and POSTHUMUS, M. A. 1994. Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol. 20:1329-1354.

    Google Scholar 

  • THALER, J. S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686-687.

    Google Scholar 

  • THOMMA, B. P. H. J., EGGERMONT, K., PENNICKX, I. A. M. A., MAUCH-MANI, B.M., VOGLSANG, R., CAMMUE, B. P. A., and BROEKAERT, W. F. 1998. Separate jasmonate-dependent and salicylatedependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95:15107-15111.

    PubMed  Google Scholar 

  • TURLINGS, T. C. J., TUMLINSON, J. H., and LEWIS, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251-1253.

    Google Scholar 

  • TURLINGS, T. C. J., TUMLINSON, J. H., HEATH, R. R., PROVEAUX, A. T., and DOOLITTLE, R. E. 1991. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J. Chem. Ecol. 17:2235-2251.

    Google Scholar 

  • TURLINGS, T. C. J., LOUGHRIN, J. H., MCCALL P. J., RöSE U. S. R., LEWIS, W. J., and TUMLINSON, J. H. 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. USA 92:4169-4174.

    PubMed  Google Scholar 

  • VAN LOON, J. J. A., DE BOER, J. G., and DICKE, M. 2000. Parasitoid-plant mutualism: Parasitoid attack of herbivore increases plant reproduction. Entomol. Exp. Appl. 97:219-227.

    Google Scholar 

  • WANNER, L. A., LI, G., WARE, D., SOMSSICH, I. E., and DAVIS, K. R. 1995. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol. Biol. 27:327-338.

    PubMed  Google Scholar 

  • WHITMAN, D. W. and ELLER, F. J. 1990. Parasitic wasps orient to green leaf volatiles. Chemoecology 1:69-75.

    Google Scholar 

  • YANO, S. and OHSAKI, N. 1993. The phenology and intrinsic quality of wild crucifers that determine the community structure of their herbivorous insects. Res. Pop. Ecol. 35:151-170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Poecke, R.M.P., Posthumus, M.A. & Dicke, M. Herbivore-Induced Volatile Production by Arabidopsis thaliana Leads to Attraction of the Parasitoid Cotesia rubecula: Chemical, Behavioral, and Gene-Expression Analysis. J Chem Ecol 27, 1911–1928 (2001). https://doi.org/10.1023/A:1012213116515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012213116515

Navigation