Skip to main content
Log in

Hydrothermal synthesis of fine oxide powders

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This is a review and an overview on hydrothermal synthesis of fine oxide powders. The term hydrothermal today includes methods which involve water at pressures (from 1 atm-several kilobars) and high temperatures from 100–10,000°C. Hydrothermal is one of the best methods to produce pure fine oxide powders. The authors describe (i) hydrothermal decomposition, (ii) hydrothermal metal oxidation, (iii) hydrothermal reaction, (iv) hydrothermal precipitation and hydrothermal hydrolysis, (v) hydrothermal electrochemical, (vi) reactive electrode submerged arc, (vii) hydrothermal microwave, (viii) hydrothermal sonochemical, etc and also ideal and real powders

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autoclave Engineers, Catalauge

  • Brice L C 1986Hydrothermal growth, crystal growth processes (Glasgow: Blackie Halsted Press) p. 194

    Google Scholar 

  • Brinker C Jet al (eds) 1984Better ceramics through chemistry I (Amsterdam: North Holland) p. 398

    Google Scholar 

  • Byrappa K (ed.) 1991Hydrothermal growth of crystals, progress in crystal growth and characterization of materials (Oxford: Pergamon Press)

    Google Scholar 

  • Chemical Society of Japan (ed.) 1985Ultral fine powders—Science and application (Tokyo: Gakkai Publication Centre) p. 211

    Google Scholar 

  • Dawson W J 1988Am. Ceram. Soc. Bull. 67 1973

    Google Scholar 

  • Demianets L Net al 1984Growth and synthesis in hydrothermal solutions, Modern crystallography III, Crystal growth (eds) A A Chernovet al (Berlin: Springer-Verlag) p. 380

    Google Scholar 

  • Eitel W 1966Silicate science (New York: Academic Press)Vol. IV p. 149

    Google Scholar 

  • Ganguli D and Chatterjee M 1997Ceramic powder preparation: A handbook (The Netherlands: Kluwer Academic Publishers) p. 221

    Google Scholar 

  • Haberko Ket al 1991J. Am. Ceram. Soc. 74 2622

    Article  Google Scholar 

  • Haberko Ket al 1995J. Am. Ceram. Soc. 78 3397

    Article  Google Scholar 

  • Hishinuma Ket al 1988Advances in ceramics, Science and technology of zirconia III (Westerville, Ohio: Am. Ceram. Soc.) Vol.24 p. 201

    Google Scholar 

  • Ismail M G M U and Sōmiya S 1983Proc. Int. symp. on hydrothermal reactions (Tokyo: Gakujutsu Bunken Fukyu Kai) p. 669

    Google Scholar 

  • Johnson Jr. D W 1987Advances in ceramics (eds) G L Messinget al (Westerville, Ohio: Am. Ceram. Soc.)Vol. 21 p. 3

    Google Scholar 

  • Kato A and Yamaguchi T 1983New ceramic powder handbook (Tokyo: Tokyo Science Forum) p. 558

    Google Scholar 

  • Komarneni Set al 1986Advanced ceramic materials (Westerville, Ohio: Am. Ceram. Soc.)1 p. 87

    Google Scholar 

  • Komarneni Set al 1992Mater. Res. Bull. 27 1393

    Article  CAS  Google Scholar 

  • Komarneni Set al 1993J. Mater. Res. 8 3176

    Article  CAS  Google Scholar 

  • Komarneni Set al 1994J. Mater. Chem. 4 1903

    Article  CAS  Google Scholar 

  • Komarneni Set al 1995J. Mater. Res. 10 1687

    Article  CAS  Google Scholar 

  • Kumar A and Roy R 1988J. Mater. Res. 3 1373

    Article  CAS  Google Scholar 

  • Kumar A and Roy R 1989J. Am. Ceram. Soc. 72 354

    Article  CAS  Google Scholar 

  • Laudise R A 1970Hydrothermal growth, The growth of single crystals (New Jersey: Prentice Hall Inc.) p. 275

    Google Scholar 

  • Lobachev A N (ed.) 1971Hydrothermal synthesis of crystals (New York: Consultant Bureau) p. 152

    Google Scholar 

  • Messing G Let al (eds) 1987Ceramic powder science, Advances in ceramics (Westerville, Ohio: Am. Ceram. Soc.)Vol. 21 p. 825

    Google Scholar 

  • Milia A M 1995Sonochemistry and cavitation (Luxemburg: Gordon and Breach Publishers) p. 543

    Google Scholar 

  • Morey G W 1953J. Am. Ceram. Soc. 36 279

    Article  CAS  Google Scholar 

  • Nishizawa Het al 1982J. Am. Ceram. Soc. 65 343

    Article  CAS  Google Scholar 

  • Parr Instrument Co. Catalogue

  • Rabenau A 1985Angew. Chem. Int. Ed. Engl. 24 1026

    Article  Google Scholar 

  • Riman R 1999The textbook ceramic powder technologies, 101st Annual meeting (Westerville, Ohio: Am. Ceram. Soc.)

    Google Scholar 

  • Rouxed Jet al 1994Soft chemistry routes to new materials— Chemie douce (Switzerland: Trans. Tech.) p. 394

    Google Scholar 

  • Sōmiya S (ed.) 1983Proc. first int. symp. on hydrothermal reactions (Tokyo: Gakujutsu Bunken Fukyu Kai) p. 965

    Google Scholar 

  • Sōmiya S (ed.) 1989Hydrothermal reactions for material science and engineering, An overview of research in Japan (London: Elsevier Applied Science) p. 505

    Google Scholar 

  • Sōmiya S 1994Advanced materials 1993, VI Trans. MRS-Japan frontiers in materials science and engineering (Amsterdam: Elsevier Science BV) Vol.19B p. 1105

    Google Scholar 

  • Sōmiya S and Akiba T 1999Trans. MRS-Tokyo, Japan 24 531

    Google Scholar 

  • Sōmiya Set al 1991Hydrothermal growth of crystals, Progress in crystal growth and characterization of materials (Oxford: Pergamon Press)Vol. 21 p. 195

    Google Scholar 

  • Segal D 1989Chemical synthesis of advanced ceramic materials (Cambridge: Cambridge University Press) p. 182

    Google Scholar 

  • Stambaugh E P 1983New/improved ceramic, magnetic and electronic oxides by hydrothermal processing, 85th Annual meeting (Chicago, II: Am. Ceram. Soc.)

    Google Scholar 

  • Tani Eet al 1981J. Am. Ceram. Soc. 64 C-181

    Article  Google Scholar 

  • Tani Eet al 1983J. Am. Ceram. Soc. 66 11

    Article  CAS  Google Scholar 

  • Tem-Press Div. Leco Corp. Catalogue

  • Toraya Het al 1984Advances in ceramics, Science and technology of zirconia II (Westerville, Ohio: Am. Ceram. Soc.)Vol. 12 p. 806

    Google Scholar 

  • Veale C R 1972Fine powder preparation, Properties and uses (London: Applied Science Publishers) p. 147

    Google Scholar 

  • Vincenzini P (ed.) 1983Ceramic powders (Amsterdam: Elsevier Scientific Co.) p. 1025

    Google Scholar 

  • Walker A C 1953J. Am. Ceram. Soc. 36 250

    Article  CAS  Google Scholar 

  • Yoo S Eet al 1988Sintering 87 (eds) S Sōmiyaet al (London: Elsevier Applied Science) p. 108

    Google Scholar 

  • Yoshimura M and Sōmiya S 1984 Rep. Res. Lab. Eng. Mat. Tokyo Inst. of Technology No. 9 p. 53

  • Yoshimura Met al 1981Preparation of zirconia fine powders by the reactions between zirconium metal and high temperature-high pressure solutions, 8th AIRAPT conf. 1988 (Sweden: 8th AIRAPT Committee) p. 793

  • Yoshimura Met al 1987 Rep. Res. Lab. Eng. Mat. Tokyo Inst. of Technology No. 12 p. 59

  • Yoshimura Met al 1989a Rep. Res. Lab. Eng. Mat. Tokyo Inst. Technology No. 14 p. 21

  • Yoshimura Met al 1989bJ. Ceram. Soc. Jap. Int. Ed. 97 14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sōmiya, S., Roy, R. Hydrothermal synthesis of fine oxide powders. Bull Mater Sci 23, 453–460 (2000). https://doi.org/10.1007/BF02903883

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02903883

Keywords

Navigation