Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure

Abstract

Control over the orientational order of liquid crystals (LCs) is critical to optical switching and display applications. Porous polymer networks have been used to influence the orientation of embedded chiral liquid crystals1, yielding for example reflective displays. Here we show that inorganic films with a porous structure engineered on the submicrometre scale by glancing-angle deposition2,3 can be used to control the orientation of LCs impregnated into the voids. The inorganic material contains helical columns that orient rod-like nematic LCs into a phase similar to a chiral nematic1,4 but with direct control of the local molecular arrangement (for example, the helical pitch) imposed by the inorganic microstructure. We also show that reactive LC molecules in this composite material can be crosslinked by photopolymerization while retaining the imposed structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Porous inorganic GLAD film impregnated with optically isotropic fluids.
Figure 2: Transmission of circularly polarized light through a porous inorganic GLAD film with LC impregnates ZLI4792 and C3M.
Figure 3: Transmission of circularly polarized light through a porous inorganic GLAD film with LC impregnate E7, and comparison with theory.

Similar content being viewed by others

References

  1. Crawford, G. P. & Zumer, S. (eds) Liquid Crystals in Complex Geometries(Taylor and Francis, London, 1996 ).

    Google Scholar 

  2. Robbie, K. & Brett, M. J. Sculptured thin films and glancing angle deposition: growth mechanics and applications. J. Vac. Sci. Technol. A 15, 1460–1465 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Robbie, K., Sit, J. C. & Brett, M. J. Advanced techniques for glacing angle deposition. J. Vac. Sci. Technol. B 16, 1115–1122 (1998).

    Article  CAS  Google Scholar 

  4. Belyakov, V. A. & Dmitrienko, V. E. Optics of chiral liquid crystals. Sov. Sci. Rev. A 13, 1989).

  5. Young, N. O. & Kowal, J. Optically active fluorite films. Nature 183, 104–105 ( 1959).

    Article  ADS  CAS  Google Scholar 

  6. Azzam, RM. A. Chiral thin solid films: method of deposition and applications Appl. Phys. Lett. 61, 3118–3120 (1992).

    Article  ADS  Google Scholar 

  7. Hodgkinson, I. J. & Wu, Q. H. Birefringent Thin Films and Polarizing Elements(World Scientific, Singapore, 1997).

    Book  Google Scholar 

  8. van Kranenburg, H. & Lodder, J. C. Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data. Mater. Sci. Eng. R 11, 295– 354 (1994).

    Article  Google Scholar 

  9. Robbie, K., Friedrich, L. J., Dew, S. K., Smy, T. & Brett, M. J. Fabrication of thin films with highly porous microstructures. J. Vac. Sci. Technol. A 13, 1032–1035 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Lakhataki, A. & Weiglhofer, W. S. On light propagation in helicoidal bianisotropic mediums. Proc. R. Soc. Lond. A 448, 419–437 (1995).

    Article  ADS  Google Scholar 

  11. Robbie, K., Brett, M. J. & Lakhtakia, A. First thin film realization of a helicoidal bianisotropic medium. J. Vac. Sci. Technol. A 13, 2991 –2993 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Robbie, K., Brett, M. J. & Lakhtakia, A. Chiral sculptured thin films. Nature 384, 616 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Rovira, P. I. et al. Rotating-compensator multichannel transmission ellipsometry of a thin-film helicoidal bianisotropic medium. Thin Solid Films 313–314;, 373–378 (1998).

    Article  ADS  Google Scholar 

  14. Barron, L. D. Molecular Light Scattering and Optical Activity(Cambridge Univ. Press, 1982).

    Google Scholar 

  15. Chandrasekhar, S. Liquid Crystals(Cambridge Univ. Press, 1977).

    Google Scholar 

  16. Robbie, K., Hnatiw, A. J. P., Brett, M. J., MacDonald, R. I. & McMullin, J. N. Inhomogeneous thin film optical filters fabricated using glancing angle deposition. Electron. Lett. 33, 1213–1214 (1997).

    Article  CAS  Google Scholar 

  17. Sit, J. C., Vick, D., Robbie, K. & Brett, M. J. Thin film microstructural control using glancing angle deposition by sputtering. J. Mater. Res. 14, 1197–1199 ( 1999).

    Article  ADS  CAS  Google Scholar 

  18. Xu, F., Kitzerow, H.-S. & Crooker, P. P. Electric-field effects on nematic droplets with negative dielectric anisotropy. Phys. Rev. E 46, 6535–6540 (1992).

    Article  CAS  Google Scholar 

  19. Ondris-Crawford, R. J. et al. Surface molecular anchoring in microconfined liquid crystals near the nematic-smectic-A transition. Phys. Rev. E 48, 1998–2005 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Berreman, D. W. Optics in stratified and anisotropic media: 4 × 4-matrix formulation. J. Opt. Soc. Am. 62, 502– 510 (1972).

    Article  ADS  CAS  Google Scholar 

  21. St John, W. D., Fritz, W. J., Lu, Z. J. & Yang, D.-K. Bragg reflection from cholesteric liquid crystals. Phys. Rev. E 51, 1191–1198 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Xu, M., Xu, F. & Yang, D.-K. Effects of cell structure on the reflection of cholesteric liquid crystal displays. J. Appl. Phys. 83, 1938– 1944 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Broer, D. J., Lub, J. & Mol, G. N. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature 378, 467– 469 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Sciences and Engineering Council of Canada and the Alberta Microelectronic Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Robbie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robbie, K., Broer, D. & Brett, M. Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature 399, 764–766 (1999). https://doi.org/10.1038/21612

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21612

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing